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Abstract 

This work aims to identify the parameters of solar photovoltaic (PV) cells, which can then be used for modeling PV systems 
and designing controllers. The dynamic equation governing correlation among current and voltage at the output terminals of a 
solar cell is predominantly dependent on different parameters of the single diode model (SDM) or double diode model (DDM) 
representation of that solar PV cell. Without easy access to this information, accurately modeling PV systems for further studies 
becomes difficult. So, to identify those parameters with greater accuracy and less complexity, particle swarm optimization (PSO) 
in conjunction with the weighted objective function (WOF) has been proposed in this paper. This proposition of multi-objective 
optimization with a metaheuristic algorithm is found to give very satisfactory results while reducing any further modification in 
conventional PSO and with faster convergence. 

Keywords: parameter identification; solar PV cell; PSO; weighted objective function. 

 
 

I. Introduction 
A common way to deal with climate change due to 

the overuse of fossil fuels is by using renewable energy 
sources [1]. Of these renewable sources, the longevity 
and abundance of solar energy have made us fascinated 
to use solar photovoltaic (PV) cells for the generation 
of electrical power on large scales [2]. Given the pivotal 
role that solar PV cells play as the cornerstone of any 
photovoltaic power generation system, the modeling of 
these cells, predominantly carried out through the 
single diode model (SDM) and double diode model 
(DDM), has assumed critical importance. This 
modeling process is indispensable for the precise 

characterization of PV cells as it extracts model 
parameters with a high degree of accuracy. Its 
significance reverberates throughout the entire 
spectrum of PV system activities, including design, 
simulation, analysis, control, and comprehensive 
optimization. Based on the intrinsic physical behavior 
within the solar cell, SDM and DDM have been derived 
to give us an equivalent circuit [1][3]. 

Parameter identification [4] is the process of 
deducing unknown parameters in the relationship 
between the input (cause) and output (effect) of a 
system (process) based on observed (measured) data, 
with some constraints in hand to be satisfied through 
some complex optimization technique. With this, the 
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model parameters can be identified, which helps to 
replicate any real system behavior [3]. Over the past few 
years, a multitude of endeavors have been undertaken 
to unearth the enigmatic parameters inherent to 
different photovoltaic (PV) cells, harnessing the 
formidable prowess of various metaheuristics where  
particle swarm optimization (PSO) [5] is the most 
prominent contender among different swarm 
intelligence based techniques such as simplified particle 
swarm optimization (SPSO) [6], genetic algorithm 
(GA) [7], dynamic self-adaptive and mutual-
comparison teaching-learning-based optimization 
(DSA-MCTLBO) [8], enhanced particle swarm 
optimization (EPSO) [9], multi-strategy success-
history-based adaptive differential evolution with 
linear population size reduction (MLSHADE) [10], 
lightning search algorithm (LSA) [11], etc. These are 
the kinds of algorithms that are generally used for 
finding solutions to transcendental equations, which 
include nonlinear optimization functions with several 
unknowns. Within this literature, the work is confined 
within the identification of PV cell model parameters. 

A thorough application of PSO-based parameter 
extraction of solar PV system is presented in [12]. 
Literatures [1][6][9], again deal with different solar cell 
models for parameter extraction using PSO-based 
algorithm and having root mean square error (RMSE) 
as optimization criterion, other than [6]. Employing the 
lightning search algorithm under various weather 
conditions, literature [11] has extracted the 
unidentified solar cell parameters. An alternative 
approach for evaluating specific models tailored to 
various photovoltaic technologies is considered in [3] 
by modifying the dynamic equation describing the PV 
cell model. In literature [13], an iterative algorithm 
proposed considering some modified PV cell dynamic 
equations is able to estimate the SDM parameters from 
the PV panel’s datasheet. Literature [14] uses a hybrid 
optimization method to find the PV cell parameters 
derived from Levenberg-Marquardt along with PSO. 
A chaotic optimization approach is the core of 
estimating SDM and DDM solar cell parameters in [15]. 
The grasshopper optimization algorithm is used by the 
researchers in [16] to identify unknowns of a three-
diode photovoltaic model. The same issue is being 
addressed through dynamic self-adaptive and mutual-
comparison teaching-learning-based optimization 
in [8]. Other than previously mentioned metaheuristic 
algorithms followings have also been applied for 
photovoltaic (PV) parameter identification, including 
hybrid Nelder-Mead and modified PSO [17], artificial 
bee colony (ABC) [18], cat swarm optimization (CSO) 
[19], and improved artificial bee colony (ABC) [20]. 
Additionally, modified particle swarm optimization 

(PSO) [21], arithmetic optimization algorithm (AOA) 
with newton-raphson [22], and various other 
metaheuristic techniques [23] have been explored for 
enhanced accuracy and convergence. The researchers 
have given an intriguing idea in [24] to find unknown 
parameters of an intricate solar photovoltaic (PV) cell 
model. Their approach combines the strengths of the 
artificial bee colony (ABC) algorithm and the PSO 
algorithm, resulting in a potent hybrid optimization 
strategy. A useful broad review of the application of 
metaheuristics for parameter extraction in the context 
of solar photovoltaic systems can be read in [25]. Now, 
all these techniques are very complex and resource-
hungry with increased algorithm complexity. 

This research has used particle swarm optimization 
(PSO) [5] to minimize the proposed weighted objective 
function (WOF) and find the desired parameters of the 
PV cell models. This method operates solely on the I-V 
data of a solar cell, aiming to discern the model 
parameters by solving the transcendental equation that 
encapsulates the relationship between terminal voltage 
and output current of any solar PV system. The PSO is 
thought to be one of the best optimization methods for 
such equations [12]. Obtained results are then 
compared with other techniques from several standard 
literatures for the validation of the applied 
methodology. Consequently, this approach is 
straightforward to implement and comprehend. Both 
the SDM-based and DDM-based representations have 
been addressed with different computational 
complexities in MATLAB due to the incorporation of a 
higher number of unknown model parameters for 
DDM than for SDM. 

II. Materials and Methods 

A. Modeling of solar cell 

1) Single diode model 

The predominant equivalent circuit, employed for 
solar cells across various applications, is exemplified in 
Figure 1, commonly referred to as the single diode 
model (SDM). The principal objective when 
formulating the mathematical model lies in elucidating 
the intricate interplay between the terminal voltage, 𝑉𝑉𝑡𝑡 

 
Figure 1. Equivalent circuit model of solar cell (SDM). 
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(expressed in volts) and the current output, 𝐼𝐼𝑡𝑡 
(measured in amperes) of the photovoltaic cell, 
delineated in terms of several essential circuit 
parameters. 

Now, the mathematical expression representing the 
relation between 𝐼𝐼𝑡𝑡  and 𝑉𝑉𝑡𝑡  can be written as equation 
(1) [23]. 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷 − 𝐼𝐼𝑠𝑠ℎ = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷 −  𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

 (1) 

where, 𝐼𝐼𝑝𝑝ℎ is current generated by light in the cell, 𝐼𝐼𝐷𝐷 is 
diode current, 𝑅𝑅𝑠𝑠  is series resistance, 𝐼𝐼𝑠𝑠ℎ  is current 
flowing through the parallel resistance and 𝑅𝑅𝑠𝑠ℎ  is 
parallel resistance of the SDM-based equivalent circuit 
of the solar cell. 

The diode current (𝐼𝐼𝐷𝐷), as per the Shockley equation, 
is given by equation (2). 

𝐼𝐼𝐷𝐷 = 𝐼𝐼0 �𝑒𝑒
�𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠𝑎𝑎𝑉𝑉𝑇𝑇

� − 1� (2) 

where, 𝐼𝐼0  is reverse saturation current of diode, a is 
ideality factor of diode (range: 1 – 2) and 𝑉𝑉𝑇𝑇 is thermal 
voltage is 𝑘𝑘𝑇𝑇𝑐𝑐

𝑞𝑞
 (where, Boltzmann’s constant is given by 

‘k’= 1.381×10-23 joule/kelvin, q = charge of an electron 
= 1.602×10-19 coulomb and Tc = p-n junction 
temperature in kelvin). 

Thus, the current 𝐼𝐼𝑡𝑡 is given by equation (3). 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼0 �𝑒𝑒
�𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠𝑎𝑎𝑉𝑉𝑇𝑇

� − 1� − 𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

 (3) 

Here, the system identification is to work with the 
above equation (3) for extracting the following five 
indefinite parameters, i.e. 𝑋𝑋𝑆𝑆𝐷𝐷𝑆𝑆 =
[𝐼𝐼𝑝𝑝ℎ , 𝐼𝐼0,𝑎𝑎,𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑠𝑠ℎ]. 

2) Double diode model 

It’s a bit complicated one, where, two diodes are 
used instead of one as in case of SDM; to represent the 
solar cell. In this case, the mathematical expression 
representing the relation of current output, 𝐼𝐼𝑡𝑡  and 
terminal voltage, 𝑉𝑉𝑡𝑡  of the solar cell is represented by 
equation (4)[19]. 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷1 − 𝐼𝐼𝐷𝐷2 − 𝐼𝐼𝑠𝑠ℎ = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼𝐷𝐷1 − 𝐼𝐼𝐷𝐷2 −  𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

 

 (4) 

where, 𝐼𝐼𝐷𝐷1  and 𝐼𝐼𝐷𝐷2  are diode currents of the diodes 
present in the equivalent circuit of Figure 2, and other 
terms have the same meaning as previously discussed. 

The current 𝐼𝐼𝑡𝑡  becomes equation (5) (using 
Shockley equation). 

𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼01 �𝑒𝑒
�𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠𝑎𝑎1𝑉𝑉𝑇𝑇

� − 1� − 𝐼𝐼02 �𝑒𝑒
�𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠𝑎𝑎2𝑉𝑉𝑇𝑇

� − 1� −
𝑉𝑉𝑡𝑡+𝐼𝐼𝑡𝑡𝑅𝑅𝑠𝑠
𝑅𝑅𝑠𝑠ℎ

 (5) 

where, 𝐼𝐼01 and 𝐼𝐼02  are diode reverse saturation currents 
and 𝑎𝑎1  and 𝑎𝑎2  respectively, are diode ideality factors 
present in the equivalent circuit of Figure 2 with other 
terms having the same meaning as discussed for SDM. 

Applying the system identification method, these 
seven unknowns, i.e. 𝑋𝑋𝐷𝐷𝐷𝐷𝑆𝑆 =
[𝐼𝐼𝑝𝑝ℎ , 𝐼𝐼01 , 𝐼𝐼02 ,𝑎𝑎1,𝑎𝑎2,𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑠𝑠ℎ]  can be determined 
with the help of equation (5). 

B. Formulation of the problem 

Parameter identification deals with the extraction 
or calculation of unknown quantities that are required 
in defining the exact dynamic model replicating the 
original system’s behavior from some known 
information or available data of prospective system 
variables. In this case, with the help of available I-V data 
for a solar cell at certain ambient temperature and solar 
irradiance, its parameters of equivalent circuit have 
been determined. With the estimated parameters for 
different terminal voltages, corresponding output 
currents of that PV cell can be obtained from 
equations (3) and equation (5). Thus, it’s basically a 
curve-fitting problem and can also be categorized as an 
optimization issue to be handled. This optimization is 
done by estimating the SDM or DDM parameters and 
comparing all the estimated values of output cell 
currents with experimental results, considering the 
same operating conditions. 

Various performance indices, such as mean square 
error (MSE), root mean square error (RMSE), absolute 
error (AE), mean absolute error (MAE), and others [4], 
have been employed to quantify the disparities between 
estimated and experimental data. The aim is to 
minimize the objective function to arrive at solutions 
for unknown variables successfully. In this 
investigation, a composite objective function 
comprising of MAE expressed by equation (6) and 
RMSE expressed by equation (7), is utilized to ascertain 
the most favorable values for the unidentified 
parameters. Now, this combination of two 
performance indexes is named as weighted objective 
function (WOF), as represented by equation (8). In this 
context, MAE and RMSE are expressed in the following 
manner: 

 
Figure 2. Equivalent circuit model of solar cell (DDM). 
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MAE = 1
𝑁𝑁
∑ �(𝐼𝐼𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑡𝑡_𝑚𝑚𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚)�𝑁𝑁
𝑗𝑗=1  (6) 

RMSE =�1
𝑁𝑁

× ∑ (𝐼𝐼𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐼𝐼𝑡𝑡_𝑚𝑚𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚)2𝑁𝑁
𝑗𝑗=1  (7) 

WOF = 𝑤𝑤1 × MAE + 𝑤𝑤2 × RMSE (8) 

where, 𝑤𝑤1 and 𝑤𝑤2 are provided weightages to MAE and 
RMSE and for any (𝑤𝑤1 , 𝑤𝑤2 ) such that 𝑤𝑤1 + 𝑤𝑤2 = 1 
with 𝑤𝑤1 ≥ 0 and 𝑤𝑤2 ≥ 0. 

The empirically acquired solar cell 𝐼𝐼 − 𝑉𝑉 dataset is 
readily available from [1], and the estimated current 
( 𝐼𝐼𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ) values are calculated using the 
equation (3) for SDM and using equation (5) for DDM. 
Now, using equation (9) to frame the problem as an 
optimization challenge, the precise objective function 
can be depicted as follows: 

WOF(X)=𝑤𝑤1 ×
1
𝑁𝑁
∑ 𝑓𝑓�𝑉𝑉𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑡𝑡_𝑚𝑚𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚 ,𝑋𝑋�𝑁𝑁
𝑗𝑗=1 + 𝑤𝑤2 ×

�1
𝑁𝑁

× ∑ {𝑓𝑓�𝑉𝑉𝑡𝑡_𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐼𝐼𝑡𝑡_𝑚𝑚𝑠𝑠𝑡𝑡𝑒𝑒𝑚𝑚𝑚𝑚𝑡𝑡𝑚𝑚𝑚𝑚 ,𝑋𝑋�}2𝑁𝑁
𝑗𝑗=1  

 (9) 

where, 𝑓𝑓(𝑉𝑉𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑋𝑋𝑆𝑆𝐷𝐷𝑆𝑆) = 𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑝𝑝ℎ + 𝐼𝐼𝐷𝐷 + 𝐼𝐼𝑠𝑠ℎ  for SDM 
and 𝑓𝑓(𝑉𝑉𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑋𝑋𝐷𝐷𝐷𝐷𝑆𝑆) = 𝐼𝐼𝑡𝑡 − 𝐼𝐼𝑝𝑝ℎ + 𝐼𝐼𝐷𝐷1 + 𝐼𝐼𝐷𝐷2 + 𝐼𝐼𝑠𝑠ℎ  for 
SDM with N indicating the overall count of 
experimentally obtained (𝑉𝑉𝑡𝑡, 𝐼𝐼𝑡𝑡) data points, the vector 
X contains the unknown parameters that are to be 
extracted. As seen in equation (8), it becomes clear that 
a smaller WOF value results in a more precise 
identification of parameters. 

Considering that equations (3) and equation (5) are 
transcendental in nature, the quest for their solutions is 
best suited for a metaheuristic optimization approach. 
Consequently, in this particular scenario, for 
minimizing the WOF, particle swarm optimization 
(PSO) [5][12] has been chosen as the method of choice. 

C. Identification of solar cell model parameters 

The central concern revolves around the strategic 
utilization of PSO to optimize the objective function 
and deduce the obscure parameters. The approach we 
utilize, as outlined in reference [5], can be concisely 
described using the subsequent procedural summary 
with the following steps: 

• Step 1: Define the model structure as outlined by 
equation (3) or equation (5) and the unknown 
model parameter X. Here, the ‘particle’ is nothing 
but the unknown model parameter. 

• Step 2: In the first iteration of PSO, initialize 
multiple sets of X as particles. Specify PSO 
parameters, including population size, maximum 
and minimum velocities, and momentum, among 
others. 

• Step 3: Create the initial swarm randomly in the 
first iteration. Calculate the fitness of each particle 
using the cost function described in equation (8). 

• Step 4: The velocity of particles, inertia weight, 
and each particle’s position are then updated 
using equations (10), equation (11) and 
equation (12), respectively. 

• Step 5: If the ongoing iteration number is lower in 
value than the maximum number of iterations, 
the procedure needs be repeated from step 4. If the 
maximum number of iterations is completed or 
for certain previous iterations the value of the cost 
function is not changed, then the simulation is to 
be stopped. The particle with maximum fitness is 
the solution to this optimization. 

The mathematical representation of altering the 
particle's velocity and position is elucidated by the 
following equation (10). 

𝑉𝑉𝑒𝑒𝑘𝑘+1 = 𝑤𝑤𝑉𝑉𝑒𝑒𝑘𝑘 + 𝑐𝑐1𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟1(… ) × �𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑒𝑒𝑘𝑘� +
𝑐𝑐2𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟2(… ) × (𝑔𝑔𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑒𝑒𝑘𝑘) (10) 

where, velocity of 𝑖𝑖𝑡𝑡ℎ agent at 𝑘𝑘𝑡𝑡ℎ iteration is 𝑉𝑉𝑒𝑒𝑘𝑘 , 𝑤𝑤 is 
the weighting function, 𝑐𝑐 is weighting factor, random 
number 𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟 is distributed uniformly within the range 
of 0 to 1, at 𝑘𝑘𝑡𝑡ℎ iteration 𝑝𝑝𝑒𝑒𝑘𝑘 is the current position of 
𝑖𝑖𝑡𝑡ℎ  agent, 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑒𝑒  is pbest of 𝑖𝑖𝑡𝑡ℎ  agent, 𝑔𝑔𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝 is gbest 
of the group. 

Weighting function of equation (10) is generally 
expressed by equation (11). 

𝑤𝑤 =  𝑤𝑤𝑆𝑆𝑚𝑚𝑀𝑀 − [(𝑤𝑤𝑆𝑆𝑚𝑚𝑀𝑀 − 𝑤𝑤𝑆𝑆𝑒𝑒𝑀𝑀) × 𝑖𝑖𝑝𝑝𝑒𝑒𝑟𝑟]/𝑚𝑚𝑎𝑎𝑚𝑚𝐼𝐼𝑝𝑝𝑒𝑒𝑟𝑟 (11) 

where, 𝑤𝑤𝑆𝑆𝑚𝑚𝑀𝑀 is initial weight, 𝑤𝑤𝑆𝑆𝑒𝑒𝑀𝑀  is final weight, 
𝑚𝑚𝑎𝑎𝑚𝑚𝐼𝐼𝑝𝑝𝑒𝑒𝑟𝑟  is maximum number of iterations, 𝑖𝑖𝑝𝑝𝑒𝑒𝑟𝑟  is 
current iteration number. 

The equation for updating position is equation (12). 

𝑝𝑝𝑒𝑒𝑘𝑘+1 = 𝑝𝑝𝑒𝑒𝑘𝑘 + 𝑉𝑉𝑒𝑒𝑘𝑘+1 (12) 

where, 𝑝𝑝𝑒𝑒𝑘𝑘+1 is modified position and 𝑉𝑉𝑒𝑒𝑘𝑘+1 is modified 
velocity of 𝑖𝑖𝑡𝑡ℎ agent, respectively. 

Now, with the help of a flowchart Figure 3, the 
approach for extracting solar cell parameters using a 
particle swarm optimization algorithm is basically 
described. Here, the goal is to determine the 
undisclosed PV cell parameters, either five unknowns 
for SDM or seven unknowns for DDM, through some 
number of particles or search agents, which are under 
consideration. Now, the specialty of this approach is the 
objective function or the criterion function, which is a 
combination of the weighted sum of two different 
errors. Also, for comparison purposes, the best scores 
obtained in objective space have been used to obtain the 
closeness of identified parameters with the actual values, 
as the parameter values of different simulations with 
different optimization algorithms are unable to directly 
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quantify the accuracy of the results. So, this value can 
be treated as a measure of the accuracy of the applied 
technique for finding unknown PV cell parameters 
under consideration. 

For all the simulation purposes, the following values 
of different algorithm parameters, as listed in Table 1, 
are considered. 

III. Results and Discussions 
Now, after applying the stated technique, results 

obtained are discussed and compared with the results 
of some standard literature. The I-V datasets of [8] have 
served as a standard in evaluating algorithms’ 
performance with the newly proposed objective 
function. The datasets comprise 26 data points 
pertaining to an RTC France PV cell (in solar irradiance 
of 1000 W/m2 and at 33 °C temperature). With these 
data in hand, a consideration of a total of ten cases is 
made, five for each SDM and DDM, with different 
values of WOFs and RMSE only as objective functions. 
It’s a well-known fact that most metaheuristics are 
profoundly implemented using MATLAB. The search 
range for the PV cell parameters considered is listed in 
Table 2 and is commonly used in the literature; they are 
considered for fair comparisons among different 
literature and this research work. 

Figure 4 and Figure 5 imply that the results of the 
SDM model in terms of current (I) and power (P) 
estimations are almost resembling all the 26 (twenty-
six) measured data points of RTC France cell w. r. t. the 
developed voltage (V) at terminals of the PV cell. 
Table 3 shows the estimated PV cell parameters of SDM, 
for which the estimated curves have a perfect match 
with the measured one. Also, the same table can reveal 
the power of the chosen objective function, which has 
mostly given values in the objective space lower than 
the case when RMSE is used for optimization using the 
PSO algorithm. Not only that, but Figure 6 also shows 
us the variation of errors corresponding to the 
estimated currents at different data points for different 
objective functions. 

The displayed convergence plots of Figure 7 show 
that the results obtained with w1 = 0.7 and w2 = 0.3 have  

 

Figure 3. Flowchart of the used PSO algorithm for PV cell parameter 
estimation. 

Table 1. 
PSO Parameters. 

PSO parameters wMax wMin c1 c2 maxIter No. of search agents Problem dimension or number of unknown 
parameters 

Values 0.9 0.2 2 2 1000 50 5 (for SDM)/7 (for DDM) 

 

Table 2. 
Parameter boundary values for SDM and DDM parameters of PV cell. 

Parameters Lower boundary Upper boundary 

𝐼𝐼𝑝𝑝ℎ (A) 0 1 

𝐼𝐼0 / 𝐼𝐼01 / 𝐼𝐼02  (µA) 0 1 

𝑎𝑎 / 𝑎𝑎1 / 𝑎𝑎2 1 2 

𝑅𝑅𝑠𝑠 (Ω) 0 0.5 

𝑅𝑅𝑠𝑠ℎ (Ω) 1 100 
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Figure 4. Output current (I) vs terminal voltage (V) of solar cell with estimated and measured output currents (SDM). 
 

 

Figure 5. Output power (P) vs terminal voltage (V) of solar cell with estimated and measured output powers (SDM). 
 

Table 3. 
Identified values of unknown PV cell (SDM) parameters with different objective functions. 

Identified 
parameters 

Objective functions 

RMSE 
WOF = 𝒘𝒘𝟏𝟏 × 𝐌𝐌𝐌𝐌𝐌𝐌 + 𝒘𝒘𝟐𝟐 × 𝐑𝐑𝐌𝐌𝐑𝐑𝐌𝐌 

𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟓𝟓,  
𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟓𝟓 

𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟐𝟐,  
𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟖𝟖 

𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟖𝟖, 
𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟐𝟐 

𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟕𝟕, 
𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟑𝟑 

Best score in 
objective space 

0.0018 0.0013 0.0019 0.0009 0.0008 

𝐼𝐼𝑝𝑝ℎ (A) 0.7603 0.7606 0.7761 0.7609 0.7606 

𝐼𝐼0 (µA) 0.7370 0.5636 0.7303 0.4193 0.3066 

𝑎𝑎 1.5691 1.5393 1.5750 1.5079 1.4758 

𝑅𝑅𝑠𝑠 (Ω) 0.0329 0.0341 0.0326 0.0352 0.0365 

𝑅𝑅𝑠𝑠ℎ (Ω) 99.6853 78.0507 96.5800 59.1347 53.7273 
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converged very rapidly in contrast to other selected 
weightages. It indicates the improved algorithm 
efficacy with WOF considering the proper selection of 
weightages. In this paper, this selection is totally based 
on a thumb rule with the qualifying factor that can be 
given by w1 + w2 = 1. It assures the impact of both the 
errors with a total 100 % presence of the error factor as 
a termination criterion. 

Now, if DDM is considered, the corresponding 
parameter boundaries can be found from Table 2. 
Similar results are obtained here as in the case of SDM 
but with greater accuracy. In terms of best objective 
space value and convergence of the optimization 

algorithm, the appropriate WOF has also given better 
results and faster convergence, as can be seen from 
Table 4, Figure 8 and Figure 9. Mean absolute error 
(MAE) for the estimated currents in case of DDM with  
w1 = 0.7 and w2 = 0.3 is 7.9 × 10-4 as compared to 8.12 × 
10-4, as in case of SDM. This directly quantifies the 
better results obtained for identified parameters of 
DDM with the proposed technique, using weighted 
objective function. All these claims can be better 
verified from the comparison represented in Table 5. 

Table 5 essentially shows all the values of estimated 
currents for both SDM and DDM and compares them 
to the measured 26 data sets of RTC France solar cell.  

 

Figure 6. Error comparison for different WOFs and RMSE as optimization functions in case of SDM’s parameter estimation. 
 

 

Figure 7. Convergence comparison of simulations to find unknown PV cell parameters with different WOFs and RMSE for SDM-based 
representation. 
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Table 4. 
Identified values of unknown PV cell (DDM) parameters with different objective functions. 

Identified 
parameters 

Objective functions 

RMSE 
WOF = 𝒘𝒘𝟏𝟏 × 𝐌𝐌𝐌𝐌𝐌𝐌 + 𝒘𝒘𝟐𝟐 × 𝐑𝐑𝐌𝐌𝐑𝐑𝐌𝐌 

𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟓𝟓, 𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟓𝟓 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟐𝟐, 𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟖𝟖 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟖𝟖, 𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟐𝟐 𝒘𝒘𝟏𝟏 = 𝟎𝟎.𝟕𝟕, 𝒘𝒘𝟐𝟐 = 𝟎𝟎.𝟑𝟑 

Best score in 
objective space 

0.0009 0.0010 0.0012 0.0011 0.0008 

𝐼𝐼𝑝𝑝ℎ (A) 0.7607 0.7606 0.7603 0.7608 0.7609 

𝐼𝐼01(µA) 0.1878 -1.3117 0.9009 0.0842 0.1388 

𝐼𝐼02  (µA) 0.9766 1.0827 -1.5325 0.0050 0.1533 

𝑎𝑎1 1.4360 1.8009 1.5794 1.7688 1.9903 

 𝑎𝑎2 1.9721 1.5833 1.9785 1.3365 1.4192 

𝑅𝑅𝑠𝑠 (Ω) 0.0369 0.0344 0.0339 0.0389 0.0371 
 

  

Figure 8. Error comparison for different WOFs and RMSE as optimization functions in case of DDM’s parameter estimation. 
 

 
Figure 9. Convergence comparison of simulations to find unknown PV cell parameters with different WOFs and RMSE for DDM-based 
representation. 
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Percentage errors are so low that the estimation is in 
conformity with the actual I-V and P-V curves as can 
be found through Figure 4, Figure 5, Figure 10 and 
Figure 11. 

At the end, a comparison of the obtained result is 
very much necessary with other appropriate literature 

based on swarm intelligence related metaheuristic 
optimizations, to establish its supremacy over others. 
Thus, Table 6 and Table 7 serve the required purpose of 
giving us a better view of the novelty of the proposed 
technique, which has much lesser complexity than 
others. 

Table 5. 
Comparison of measured and estimated currents of RTC France PV cell. 

Measurement 
(data) 

Measured 
voltage (V) 

Measured 
current (A) 

Estimated current (A) Error in estimated current 
%-age error in estimated 

current 

SDM DDM SDM DDM SDM DDM 

1 -0.2057 0.7640 0.764000479 0.76400360 -4.79E-07 -3.60E-06 0.0001 0.0004 

2 -0.1291 0.7620 0.762576104 0.76132448 -5.76E-04 6.76E-04 0.0756 0.0676 

3 -0.0588 0.7605 0.761268550 0.75953742 -7.69E-04 9.63E-04 0.1011 0.0963 

4 0.0057 0.7605 0.760067457 0.76065277 4.33E-04 -1.53E-04 0.0569 0.0153 

5 0.0646 0.7600 0.758968955 0.76067591 1.03E-03 -6.76E-04 0.1357 0.0676 

6 0.1185 0.7590 0.757956587 0.75962595 1.04E-03 -6.26E-04 0.1375 0.0626 

7 0.1678 0.7570 0.757007006 0.75653178 -7.01E-06 4.68E-04 0.0009 0.0468 

8 0.2132 0.7570 0.756059338 0.75746282 9.41E-04 -4.63E-04 0.1243 0.0463 

9 0.2545 0.7555 0.755010657 0.75553290 4.89E-04 -3.29E-05 0.0648 0.0033 

10 0.2924 0.7540 0.753599501 0.75401271 4.00E-04 -1.27E-05 0.0531 0.0013 

11 0.3269 0.7505 0.751348137 0.74938073 -8.48E-04 1.12E-03 0.1130 0.1119 

12 0.3585 0.7465 0.747346353 0.74553573 -8.46E-04 9.64E-04 0.1134 0.0964 

13 0.3873 0.7385 0.740160687 0.73688030 -1.66E-03 1.62E-03 0.2249 0.1620 

14 0.4137 0.7280 0.727489573 0.72867613 5.10E-04 -6.76E-04 0.0701 0.0676 

15 0.4373 0.7065 0.707144456 0.70606791 -6.44E-04 4.32E-04 0.0912 0.0432 

16 0.4590 0.6755 0.675499953 0.67567028 4.66E-08 -1.70E-04 0.0000 0.0170 

17 0.4784 0.6320 0.630987513 0.63307341 1.01E-03 -1.07E-03 0.1602 0.1073 

18 0.4960 0.5730 0.572116597 0.57381371 8.83E-04 -8.14E-04 0.1542 0.0814 

19 0.5119 0.4990 0.499706595 0.49812042 -7.07E-04 8.80E-04 0.1416 0.0880 

20 0.5265 0.4130 0.413621355 0.41217056 -6.21E-04 8.29E-04 0.1504 0.0829 

21 0.5398 0.3165 0.317347362 0.31547627 -8.47E-04 1.02E-03 0.2677 0.1024 

22 0.5521 0.2120 0.211872789 0.21203835 1.27E-04 -3.83E-05 0.0600 0.0038 

23 0.5633 0.1035 0.101896610 0.10511774 1.60E-03 -1.62E-03 1.5492 0.1618 

24 0.5736 -0.0100 -0.009059459 -0.01089595 -9.41E-04 8.96E-04 9.4054 0.0896 

25 0.5833 -0.1230 -0.125776671 -0.12014668 2.78E-03 -2.85E-03 2.2575 0.2853 

26 0.5900 -0.2100 -0.208596993 -0.21145236 -1.40E-03 1.45E-03 0.6681 0.1452 

MAE     8.12E-04 7.90E-04   
 

Table 6. 
Comparison of SDM-based estimated model parameters of RTC France PV cell, obtained by various optimizations. 

Sl. No. Technique 𝐈𝐈𝐩𝐩𝐩𝐩 (A) 𝐈𝐈𝟎𝟎 (µA) 𝐚𝐚 𝐑𝐑𝐬𝐬 (Ω) 𝐑𝐑𝐬𝐬𝐩𝐩 (Ω) Best score in objective space 

01. PSO with WOF 
(proposed) 

0.7606 0.3066 1.4758 0.0365 53.7273 8.0000E-04 

02. PSO [1] 0.7383 0.319 1.4799 0.0364 53.409 1.43E-03 

03. MSSA [1] 0.7683 0.3262 1.4958 0.0367 54.2557 9.86E-04 

04. NM-MPSO [17] 0.76078 0.32306 1.48120 0.03638 53.7222 9.8602E-04 

05. CSO [19] 0.76078 0.3230 1.48118 0.03638 53.7185 9.8602E-4 

06. ABSO [19] 0.76080 0.30623 1.47583 0.03659 52.2903 9.9124E-04 

07. MPSO [21] 0.760776 0.32302 1.481184 0.036377 53.71852 9.8602E-04 

08. BLPSO [21] 0.760805 0.34839 1.488862 0.036115 53.41719 10.3122E-04 

09. CLPSO [21] 0.760699 0.31726 1.479384 0.036434 54.04802 9.92075E-04 
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Figure 10. Output current (I) vs terminal voltage (V) of solar cell with estimated and measured output currents (DDM). 

 

Figure 11. Output power (P) vs terminal voltage (V) of solar cell with estimated and measured output powers (DDM). 
 

Table 7. 
Comparison of DDM-based estimated model parameters of RTC France PV cell, obtained by various optimizations. 

Sl. 
No. 

Technique 𝐈𝐈𝐩𝐩𝐩𝐩 (A) 𝐈𝐈𝟎𝟎𝟏𝟏  (µA) 𝐈𝐈𝟎𝟎𝟐𝟐  (µA) 𝐚𝐚𝟏𝟏 𝐚𝐚𝟐𝟐 𝐑𝐑𝐬𝐬 (Ω) 𝐑𝐑𝐬𝐬𝐩𝐩 (Ω) Best score in 
objective space 

01. PSO with WOF 
(proposed) 

0.7609 0.1388 0.1533 1.9903 1.4192 0.0371 57.9426 8.0000E-04 

02. MSSA [1] 0.7608 0.9731 0.1679 1.9213 1.4281 0.0369 53.8368 9.8300E-04 

03. CSO [19] 0.76078 0.22732 0.72785 1.45151 1.99769 0.036737 55.3813 9.8252E-4 

04. ABSO [19] 0.76078 0.26713 0.38191 1.46512 1.98152 0.03657 54.6219 9.8344E-4 

05. PSO [21] 0.76078 0.74935 0.22597 2 1.45102 0.03674 55.4854 9.8248E-04 

06. MPSO [21] 0.76078 0.22597 0.74935 1.45102 2 0.03674 55.4854 9.8345E-04 

07. BLPSO [21] 0.76017 0.14880 0.32561 1.806683 1.48523 0.03596 63.4574 1.0822E-03 

08. CLPSO [21] 0.76075 0.40103 0.24494 1.87635 1.45943 0.03642 55.0103 9.9432E-04 
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IV. Conclusion 
This paper has proposed a reliable technique for PV 

cell parameters estimation with a very well-known 
PSO-algorithm with a twist in the selection of objective 
criterion. This has bolstered the convergence 
capabilities of the basic PSO algorithm by ensuring a 
well-balanced optimization load for the intricate 
parameter identification of the comprehensive solar PV 
cell model, encompassing both the single diode and 
double diode equivalent circuits. Both sets of unknown 
solar cell parameters, consisting of five and seven 
elements, have been estimated with the use of WOF-
constrained simple PSO and compared with other 
versions of swarm intelligence-based optimization 
algorithms. The comparisons have led to the fact that, 
in many cases, a suitable combination of different 
objective functions with PSO can be used to achieve the 
best results in parameter estimation through 
optimization in transcendental equations with 
unknowns. Not only that, but also the convergence 
values have always been under 9 × 10-4 in objective 
space and speed of this methodology has always been 
better (under one sec. for SDM and 1 – 1.5 sec. for 
DDM parameters finding) or at the least at a 
comparable level than the other observed techniques 
mentioned herein with respect to the computational 
work load on computers during simulations. 
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