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Abstract 

Simultaneous localization and mapping (SLAM) has become a foundational concept in robotics navigation which enabling 
autonomous systems to build maps of unknown environments while estimating their own position. This article aims to provide 
a comprehensive review of the SLAM concept in the context of mobile robotics navigation by focusing on theoretical principles, 
estimation problems, algorithms involved, and related applications. The existing literature is systematically analyzed and 
classified based on three main perspectives of navigation, which are localization, mapping, and path planning. Particular 
attention is given to Kalman filters and their variants in SLAM-based systems, along with crucial consideration of the 
linearization and covariance initialization. This article identifies the strengths and limitations of current SLAM approaches. 
Therefore, this article concludes by outlining research gaps and recommending directions for future exploration, with the 
intention of serving as a foundation for continued innovation in SLAM-based robotic navigation systems. 

Keywords: simultaneous localization and mapping; mobile robot navigation; Kalman filter initialization; extended Kalman filter; 
unscented Kalman filter; covariance matrix; nonlinear system linearization. 

 
 

I. Introduction 
Robotics is a widely known field nowadays due to 

its demand not only in manufacturing work, but also in 
several branches such as medical [1], welding industries 
[2], education [3], space exploration, search and rescue 
operations, and many more [4]. The term ‘robotic’ can 
be defined as one of the branches related to computing 
and engineering that involves the concept, design, 
manufacture, and operation of a robot to assist 
humans [5]. Mobile robot, which is a member of the 

wheeled robot family, have become one of the research 
areas that emerged in the robotic field, which has been 
rapidly evolving with the recent demands. Mobile robot 
is widely used as it is able to perform many possibilities. 
Commonly, mobile robots act as service robots to help 
humans in their daily tasks. Currently, three main 
focuses in mobile robot study are ground robot, aerial 
robot (air), and underwater robot, with a variety of 
physical designs, sensors, and algorithms [6]. 

Mobile robots need to model an environment in 
order to perform their mission, especially the 
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autonomous navigation using sensors [4]. These 
applications are often related to the main navigation 
categories such as localization, mapping, and path 
planning. The applications are using the most 
commonly used method by researchers, which is 
simultaneous localization and mapping, or SLAM, in 
their working principle. SLAM is a well-known method 
for its various functionality and applicability that was 
first developed by Michael Csorba in 1997 [7]. Due to 
the existence of errors during navigation procedures, 
an algorithm is needed in order to filter out the non-
related data or so-called errors for producing an 
accurate result. Common filters in SLAM-based 
approaches are the Kalman filter with its extensions. 
The filter itself has the ability to initialize and perform 
linearization (with its extensions) in order for an 
accurate and reliable result to be presented. 

The remaining sections of this article are structured 
as follows: Section II presents navigation strategies used 
in mobile robotics. Section III provides an overview of 
simultaneous localization and mapping (SLAM). 
Section IV discusses the application of Kalman filter-
based approaches in SLAM. Section V focuses on 
linearization techniques. Section VI addresses 
initialization via initial covariance in SLAM. Finally, 
the conclusion is presented in Section VII. 

II. Navigation Strategies for Mobile 
Robots 

Navigation is one of the famous applications that 
involves the use of a mobile robot. Navigation can be 
classified into three different categories, which are 
based on sub-problems related to navigation, such as 
localization, mapping, and path planning [8]. The 
overall concept of navigation is as illustrated in Figure 1 
and discussed throughout this article. Localization, 
which is one of the navigation branches, is a process for 
a robot to estimate its location by considering all objects 
within its environment [9][10]. Mapping is the 
capability of a robot to represent the encountered 
features, such as landmarks, obstacles, and other 
relevant features that may exist in an environment by 
creating a map [9][11]. A robot that needs to find the 
best path or a collision-free and safe path for a specific 
outcome can be defined under path planning, or 
sometimes called trajectory planning [12][13]. The 
process of mapping and self-localization (localization) 
of the robot can be done simultaneously, which is 
simultaneous localization and mapping or SLAM using 
the help of sensors [14]. SLAM was developed by a well-
known researcher, Michael Csorba, in 1997, where he 
concluded that the errors from the vehicle and the 
estimated map have a correlation between them, and it 

has become the fundamental theory for the 
implementation of this method [7]. 

A. Localization 

Navigation from a localization point of view is 
successfully performed by following the four phases, 
which are perception, localization, cognition, and 
motion control. In the perception phase, data from the 
sensor’s interpretations will be extracted by the robot, 
and the robot’s current location in the environment will 
be estimated using the sensor’s data in the localization 
phase. With the estimated position, the robot can plan 
the right steps to reach its goal in the cognition phase. 
The motor outputs are then modified to follow the 
desired trajectory in the motion control phase. 

Problems related to localization can be simplified 
into three sections, which are position tracking, global 
localization, and the kidnapped robot. Position 
tracking is where a robot knows its initial position, but 
due to the position uncertainties, the robot cannot 
localize itself. As for global localization, the robot has 
no idea of its initial position. Similar to that, the 
kidnapped robot problem is where the robot is lost in 
an unknown location and can only be solved if the 
robot is autonomously set [10]. 

Some of the approaches that have been researched 
to solve the localization problems are the probabilistic 
approach, the radio-frequency identification (RFID) 
approach, and several evolutionary approaches. The 
most common probabilistic approaches are Markov 
and Kalman filter localization, where the theorem of 
total probability (in the prediction phase) and Bayes’ 
rule (in the update phase) is used [15]. In a simple word, 
Markov localized a robot in an unknown environment 
by updating its possible position probability and 
continuously estimating, correcting, as well as updating 
the current position by incorporating sensor 
information to predict the new position by applying 
Bayes’ rule. Similar to Markov, the Kalman filter applies 
the prediction and update phase, but the initial position 
is initially known, which makes the Kalman filter very 
efficient in solving the position tracking problem, but 
not suitable for solving global localization and the 
kidnapped robot problem. Position tracking problem 
can also be solved using an RFID approach. RFID uses 
a set of tags that are arranged in an environment to 
provide the location information that will be extracted 
by the robot when it passes through to help in 
determining the current position [10][16]. 

B. Mapping 

Mapping in navigation perspective can be classified 
into three different techniques, such as occupancy grid  
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Figure 1. Summary mind map. 
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mapping, feature-based mapping, and probabilistic 
mapping, with several famous visual algorithms that 
have been presented by previous researchers. Examples 
of algorithms are monocular SLAM (MonoSLAM), 
parallel tracking and mapping (PTAM), dense tracking 
and mapping (DTAM), large-scale direct monocular 
SLAM (LSD-SLAM), oriented features from 
accelerated segment test (FAST) and rotated BRIEF-
SLAM (ORB-SLAM), convolutional neural network 
SLAM (CNN-SLAM), etc. Like many mapping 
implementations by previous researchers, it always 
comes with the implementation of localization through 
SLAM due to its nature to create a map for the purpose 
of locating the robot or any obstacle based on the 
detected location through localizing in an environment. 

In most of the mapping techniques, there are five 
fundamental steps that are involved, which are 
initialization, feature extraction and processing, 
tracking, mapping, and loop closure. Starting with the 
initialization step, the data is acquired from the sensors, 
and it is crucial for the sensors to be calibrated to ensure 
distortion-free data. After initialization, the distinct 
features such as corners, edges, or high-contrast points 
are identified for feature matching and reconstruction 
using a feature-based method, and in the direct method, 
the raw data is used directly for estimation and 
mapping purposes. In the tracking step, the extracted 
data is used for estimating the location and orientation 
of the robot in each frame by comparing the features 
within the current and previous frames. After the 
comparison is completed, the selected information will 
be presented in a map. Finally, a loop closure is needed 
to correct the errors during the previous steps by 
continuously analyzing and comparing the current data 
with the previous data. Any revisiting actions will be 
updated to help in correcting any drifts to ensure an 
accurate map is produced [11]. 

C. Path planning 

Path planning is important for obtaining the 
optimal path, especially when a robot operates in a free 
space environment where numerous possible paths can 
be taken [17]. Path planning in navigation perspective 
acts as the bridge between the perception and motion 
control phases, [18] where it is generally divided into 
two different types of path planning according to the 
environment information. There are global path 
planning and local path planning for known and 
unknown environments, respectively [19]. A known 
environment is when the obstacle in an environment is 
fixed. 

Global path planning, also called offline or static 
path planning where the robot is aware of the 

environment and obstacles around it and can reach the 
desired destination with prior information due to the 
static environment [19]. It requires the robot to build a 
global map and understand it using a ‘search and seek’ 
algorithm in order for an optimal path to be 
obtained [18]. The method related to global path 
planning is the environment modelling and evaluation 
method of path quality [20]. Environment modelling is 
where the perceived environment is organized and 
utilized to help the robot operate efficiently. Several 
approaches in environment modelling are the grid 
method (GM), topological method (TM), geometric 
characteristic method (GCM), and mixed 
representation (MR) method. The evaluation method 
of path quality is a method that evaluates the path 
planning by seven different evaluations explained by a 
previous researcher [18]. 

Local path planning, also called online or dynamic 
path planning, on the other hand, is where the robot is 
partially known or completely unknown to the 
environment. This type of path planning is able to 
perform real-time monitoring with good flexibility, but 
the path planned is not guaranteed to be optimal. 
Several methods that incorporate the use of sensors in 
local path planning, such as laser radar sensor (LRS), 
visual sensor (VS), and multi-sensor information 
fusion (MIF), act as the environment detection 
device [18]. 

The algorithms involved in path planning are 
divided into several categories due to some researcher 
having their own classifications depending on their 
own interpretations based on the environment 
dynamics, principles, and mechanisms. If the dynamic 
of an environment becomes its benchmark, then the 
algorithm will be classified into three groups, which are 
classic, heuristic, and evolutionary approaches [19]. If 
separated by principle and mechanisms, it can be 
classified into four categories, such as reactive 
computing, soft computing, C-space search, and 
optimal control, which can then be further classified 
into more sub-categories in detail [17]. Some of the 
algorithms that are commonly used for path planning 
are A* algorithm and genetic algorithm (GA) 
[18][19][20]. 

D. Application in navigation 

There are many robots is being used by researchers 
to performed navigation such as Jetank AI mobile robot 
with mounted odometry and camera [21], Kian-I 
mobile robot with mounted ultrasonic sensors and 
infrared sensors [22], Jackal mobile robot with 
mounted inertial measurement unit (IMU) sensor [23], 
ambulance robot (Ambubot) with mounted IMU 
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sensor and outdoor global positioning system (GPS) 
[24] as well as custom mobile robot with multiple 
sensors integration [25][26]. 

III. Simultaneous Localization and 
Mapping 

Simultaneous localization and mapping (SLAM) is 
a process in which a mobile robot explores an unknown 
environment while simultaneously constructing a map 
and estimating its own position within that map 
[27][28]. This is done without any prior knowledge of 
the robot’s location or the structure of the environment. 
SLAM is formerly known as concurrent mapping and 
localization (CML) [29], which refers to the ability of a 
robot to construct a map in both artificial and real 
environments while continuously estimating its 
position as it observes its surroundings [30]. This 
process relies on onboard proprioceptive sensors, such 
as odometers, and exteroceptive sensors such as laser 
scanners. By using the data provided by these sensors 
and applying suitable algorithms to convert the 
information from the robot’s reference frame, the robot 
can estimate its current position along with the 

positions of detected features or landmarks. However, 
the SLAM process is susceptible to various sources of 
error or uncertainties, including sensor noise, 
modelling inaccuracies, system limitations, and 
algorithmic weaknesses as portrayed in Figure 2. 

A. SLAM system architecture 

SLAM in navigation systems involves four stages, 
which are sensors integration, front-end or treatment 
stage, back-end or processing stage with feedback that 
will act as a closed loop between these two stages (front-
end and back-end), and the final stage produces the 
result as shown in Figure 3. The first stage is where 
sensors receive sensory raw data collected from the 
environment. The commonly used sensors are 
odometry, IMU, light detection and ranging (LiDAR), 
and laser sensor. Generally, odometry provides the 
estimation of the motion, IMU presents the orientation 
and acceleration data, and LiDAR, as well as a laser 
sensor, generate a precise distance measurement to the 
surrounding obstacles [31][32].  

In the front-end stage, where the data from sensors 
is being given specific treatment as required by the 
objectives of the research, which commonly involves 

 
Figure 2. SLAM concept in general. 

 
 

Figure 3. SLAM system architecture. 
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feature extraction, data association, and outlier 
rejection to filter out the unnecessary information. 
Next, the process is proceeded with the back-end stage 
where all the data and treatment are being evaluated 
and refined, while the feedback mechanisms will 
provide the system’s improvement to ensure the result 
is in an optimal state. Finally, the reliable map and pose 
in trajectory form can be estimated accurately after all 
of the stages are complete [33][34]. 

B. Estimation problem in SLAM 

In order to further understand SLAM, it is better to 
explore the estimation problem. Estimation refers to 
the process of the system incorporating the initial 
parameters known as initializers and control inputs to 
begin the prediction phase. Extracting the desired 
information from the observation by systematically 
utilizing the disturbance, uncertainties, errors, and 
prior knowledge regarding the system, as well as the 
predicted data, is used to continue the estimation 
process in the update phase. The result produced is 
used again by the prediction phase, and the process will 
be repeated according to the desired needs [7]. There 
are mainly three types of estimation problems, which 
are filtering, smoothing, and prediction. Filtering is 
when an estimation is done using the last measured 
data (available data at time 𝑘𝑘). Smoothing is where the 
estimation is done within the collected data range 
(range of data at time 𝑘𝑘) [35]. Prediction is where the 
estimation is done beyond the available data, where 
future estimation is needed (beyond the range of data 
at time 𝑘𝑘 ) [36]. These estimations at time 𝑘𝑘  are 
illustrated in Figure 4. 

A successful navigation would require a mobile 
robot to understand its environment and have a reliable 
location tracking within the environment [33]. Robots, 
including mobile robots, tend to have the most 
common problem when undergoing navigation, which 
is with the sensors. Sensors help to gain information in 
creating a model of the environment that the mobile 

robot encounters. During exploration, sensors tend to 
produce errors, which cause an emergence of 
uncertainties due to sensors’ weaknesses, such as low 
resolution, reliability, and others [4]. This inaccurate 
sensory information phenomenon can sometimes 
occur due to the raw data information collected by the 
sensor is not used directly, but it is processed by a 
mathematical model that translates it into some 
meaningful information [33]. 

C. SLAM algorithm 

The SLAM algorithm can be divided into graph-
based SLAM and filter-based SLAM [37], as shown in 
Table 1. Graph-based SLAM or optimization-based 
uses a graph in representing the robot’s pose at each 
time occurrence as nodes, with the edges representing 
the spatial constraint between each pose [38]. This 
algorithm is also called as smoothing approach or full 
SLAM because its style of estimation uses using full set 
of measurements, which causes the computational cost 
to be relatively high [33][39]. Some examples of this 
type are square root smoothing and mapping (SAM), 
incremental smoothing and mapping (iSAM), and 
many more [26]. 

Table 1. 
SLAM algorithm comparison. 

Criteria Graph-based 
SLAM 

Filter-based 
SLAM 

Estimation method Optimization 
based 

Recursive based 
(filtering) 

Measurement usage Full set of 
measurement 

Current and 
previous 
measurement 

Computational cost High Moderate to low 

Initialization 
sensitivity 

Low High 

Common uses Offline mapping Real-time 
navigation 

Example SAM, iSAM, etc Kalman filter, IF, 
PF, etc 

 

 

Figure 4. Estimation problem. 
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On the other hand, filter-based SLAM, online 
SLAM, or sometimes called as filtering approach, uses 
the obtained robot’s current pose data with the map to 
estimate the new pose and position at the next time 
occurrence [26]. This type is divided into two categories, 
which are probabilistic approaches and other 
approaches. Probabilistic approaches are usually based 
on the Bayesian rule. The most common examples of 
this approach are the Kalman filter, information filter 
(IF), particle filter (PF), submap-based filter, and tree-
based filter [33]. Other approaches are FastSLAM, 
tinySLAM, linear SLAM, and many more [33][37]. 

The SLAM algorithm can be used in various sensor-
based methods, such as lidar-based SLAM and camera-
based or visual SLAM. Lidar-based SLAM incorporated 
the use of LiDAR sensors in the system, while camera-
based SLAM used cameras as its data collection tools. 
LiDAR-based SLAM is capable of handling two-
dimensional (2D) and three-dimensional (3D) systems. 
Some examples of 2D systems are Grisetti's mapping 
(GMapping) [40], Cartographer SLAM [41], and 
Hector SLAM [37], while 3D system is multi-metric 
linear least square (MULLS) [37], LiDAR odometry and 
mapping (LOAM) [38], lightweight and ground-
optimized LOAM (LeGO-LOAM) [34], and LiDAR 
inertial odometry via smoothing and mapping (LIO-
SAM) [32]. GMapping and Cartographer SLAM are 
very well known in the 2D SLAM navigation system, 
especially in mobile robots, as it is successfully become 
examples for loop closing localization with mapping 
techniques [42] and generated occupancy grid-based 
map as a result representation method [41], 
respectively. For visual SLAM, the well-known 
examples are ORB-SLAM [30], real-time appearance-
based mapping (RTAB-Map), Low Dimensional SLAM 
(L-SLAM), LSD-SLAM, and many more [37]. 

D. SLAM application 

Many applications related to SLAM has been done 
by researchers in various environments, including 
ground, which are indoor [28][37][43], outdoor 
[26][44], underwater [45][46], and airborne [47]. There 
are also many researchers implemented SLAM in 
simulation for different purposes, such as robot 
flocks [48], path planning [40], delivery system [49] 
cooperative control of mobile robots [50], etc. A robot 
operating system (ROS) -based platform mobile robot, 
such as Turtlebot3 burger, [51] is also implementing 
SLAM in order to perform the navigation procedures 
such as environment mapping, covariance 
determination, and many more, as shown in Table 2.  

IV. Kalman Filter-Based SLAM 
Approaches 

A. Kalman filter for linear systems 

The most common filtering algorithm in the 
robotics field, especially in SLAM implementation, 
would be the Kalman filter due to its simplicity in 
implementation [33]. Kalman filter or also known as 
the prediction-update algorithm, uses the dynamic 
state data to predict the next state data and eventually 
produces updated data through a numerical integration 
technique, which is Euler’s method or Runge-Kutta 
[52]. This algorithm is also a recursive algorithm that 
estimates the state variable by integrating all available 
measurements used in the prediction and estimation of 
robot tracking and positioning (also called localization), 
where the robot is in an unfamiliar map with 
uncertainties, and where a mathematical model of the 
system is used in the state estimation [53]. Optimally, 
this algorithm works in a linear environment where the 
state equation of the system can predict the state value 
to update the new state in the tracking procedure by 
applying the observation model [54]. 

Kalman filter is formulated based on a linear state 
space system in the form of state vector, 𝑥𝑥, which is an 
equation that defines position and velocity expression, 
where many derivations have been done using 
kinematic equations and observation model, 𝑧𝑧 . All 
variables and notations have been listed as in Table 3. 
These expressions were rewritten in terms of the state 
vector 𝑥𝑥𝑘𝑘  and observation model zk-1 . Noted that the 
noise vector, 𝑤𝑤 , and measurement noise vector, 𝑣𝑣  is 
neglected in the following steps (during applying the 
Kalman filter) because its value is assumed to be 
random errors with zero mean. The prediction-update 
task can be performed at each time step, which is 
denoted as 𝑘𝑘 . It is also important to note that the 

Table 2. 
SLAM application. 

Environment Application Example of SLAM 
method 

Indoor (ground) Multi-robot, 
trajectory 
estimation 

GMapping, 
Hector SLAM, 
RTAB-Map, ORB-
SLAM 

Outdoor (ground) Autonomous 
robot 

EKF SLAM, 
GMapping 

Underwater Underwater 
mapping 

3D SLAM 

Airborne Aircraft 
navigation 

Radio SLAM 

Simulated Robot flocks, path 
planner, delivery 
system, 
cooperative 
control, etc 

Any SLAM 
method 
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prediction process will always begin by applying 
initializers into the algorithm, which are the initial state 
estimate, x�0, and initial state error covariance matrix or 
also called the initial covariance matrix, P0 [54][55]. 

The prediction process begins with predicting the 
state vector, x�k|k-1  and state error covariance matrix, 
Pk|k-1  where the previous estimated state vector, x�k-1 or 
x�0  (for the first time step), input vector, 𝑢𝑢 , dynamic 
system matrices (state transition matrix, 𝐹𝐹 and control 
matrix, 𝐺𝐺 ), previous estimated state error covariance 
matrix, Pk-1 or P0 (for the first time step), and process 
noise covariance matrix, 𝑄𝑄 , are also included. The 
Kalman gain matrix, Kk , is calculated once the 
predicted value has been obtained, where the output-
defined matrix or observation matrix, 𝐻𝐻, for describing 
the observation and measurement noise covariance, 𝑅𝑅, 
is included [54]. 

The updated state vector, x�k|k  , and updated state 
error covariance, Pk|k  with the incorporation of the 
identity matrix, 𝐼𝐼  [54][56]. The predicted output, 
Hkx�k|k-1  is sometime denoted as y�k|k-1 . The subscript 
𝑘𝑘|𝑘𝑘 − 1 is a notation for a state at discrete time 𝑘𝑘 using 
its previous state at discrete time 𝑘𝑘 − 1  while the 
subscript 𝑘𝑘|𝑘𝑘 is a notation for a state at discrete time 𝑘𝑘 
(first 𝑘𝑘 refers to update step) using its previous state at 
discrete time 𝑘𝑘 (second 𝑘𝑘 refers to prediction step). 

B. Extended Kalman filter for nonlinear 
systems 

In a nonlinear environment, a normal Kalman filter 
would not be the best choice to rely on due to errors 
that emerged because of its poor tracking effect [27], 
absence of a loop closure (ability to recognize 
previously visited locations for state estimation), and 
data association problem [33]. One of the solutions for 
solving those problems would be to introduce extended 
Kalman filter (EKF) which is one of the extensions of 
Kalman filter that has been the choices for many 
applications due to its low computational cost [57]. 
This filter is introduced to solve a nonlinear system 
problem such as robot tracking and positioning [54] as 
well as its ability to build map with the accuracy of 
above 90 % [57]. EKF works by linearizing the 
nonlinear system into a linear system (linearization) by 
applying a first-order Taylor series expansion [27][58]. 
Linearization and sampling approximation are 
involved in this algorithm can fuse data from sensors to 
estimate the robot pose in three dimensions (3D) [59].  

EKF includes robot pose (position and orientation) 
with the landmark location to estimate the state 
vector [58]. The pose and landmark mean value are 
stored in the form of a column matrix (𝑛𝑛 × 1) and the 
covariance value in the form of a square matrix (𝑛𝑛 × 𝑛𝑛). 
Robot pose is represented as (𝑥𝑥,𝑦𝑦, 𝜃𝜃) where 𝑥𝑥 and 𝑦𝑦 are 
the position in 2D axes with 𝜃𝜃 is the orientation angle, 
while landmark, on the other hand, is represented as 
( 𝑟𝑟, 𝜃𝜃 ) [4]. EKF consists of a similar mathematical 
structure to the normal Kalman filter, but with a slight 
difference. Due to the nature of EKF in handling 
nonlinear systems, the state vector and observation 
model will be based on a nonlinear model state 
equation. Same as Kalman filter, process noise vector, 
𝑤𝑤, and measurement noise vector, 𝑣𝑣, are also neglected 
in the following steps, and it is denoted as zero [54].  

In implementing EKF, the nonlinear equation is 
linearized using Taylor series expansion by 
incorporating Jacobian matrices denoted as 𝛻𝛻𝛻𝛻. Due to 
the linearization, the nonlinear functions 𝛻𝛻 and ℎ will 
be directly used for the predicted state vector and 
observation model. In the prediction of the state vector, 
x�k|k-1 , and state error covariance matrix, Pk|k-1 , the 
elements included are similar to the Kalman filter 
equations, the main difference is in the existence of 
Jacobian matrices 𝛻𝛻𝛻𝛻 . After this step, the EKF 
algorithm is same as the normal Kalman filter, which is 
continued with the Kalman gain, and updated 
equations with the existence of Jacobian matrices, 
𝛻𝛻ℎ  [54]. The Kalman filters and EKF estimation 
process are summarized as shown in Figure 5. 

Table 3. 
Variables and notations included in the Kalman filter 
implementation. 

Variable/ 
notation 

Description Variable/ 
notation 

Description 

k Time step (at 
time k) 

G Control matrix 

k-1 Time step (at 
time k-1) 

H Observation/ 
output-defined 
matrix 

x State vector I Identity matrix 

x�0 Initial state 
vector 

Kk Kalman gain 
matrix 

z / y Observation/ 
measurement 
model 

P State 
covariance 
matrix 

u Input vector P0 Initial state 
covariance 
matrix 

w Process noise 
vector 

Q Process noise 
covariance 
matrix 

v Measurement 
noise vector 

R Measurement 
noise 
covariance 
matrix 

F Transition 
matrix 

∇f/∇h Jacobian 
matrix 
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The linearized EKF system can sometimes present a 
poor nonlinear function due to some error that may 
have been produced during the linearization because of 
EKF is only suitable for solving Gaussian problems 
[26][60]. Those errors can sometimes be very obvious 
due to the extremely nonlinear system, which can lead 
to filter deviation [61]. The fact that EKF’s known for 
its simple implementation operation with white 
Gaussian noise, limited in large-scale navigation and 
other factors, many researchers have proposed several 
methods that are developed from the principle of EKF 
to overcome the weaknesses drawn from this 
algorithm [62]. For example, a decorrelated distributed 
extended Kalman filter (DDEKF) is proposed to ensure 
the robot’s orientation can be revised during estimation 
to provide a consistent and accurate system by 
incorporating a magnetic compass sensor as an input 
for the measurement vector [26]. 

Other researchers also suggested using error-state 
extended Kalman filter (ES EKF) as it is known for its 
ability to perform real-time localization in the global 
navigation satellite system (GNSS) denied environment, 
such as an indoor environment [63], better than normal 
EKF [23]. Compressed extended Kalman filter (CEKF) 
is also being introduced as the improved version of EKF, 
which divides the state vector into passive and active 
parts, where in the local area, only the active part will 
be updated, but once the robot moves, both parts 
(passive and active) will be updated [62]. There is also 
an algorithm that specifically targets improving the 
system’s accuracy based on the odometric parameters 
known as the augmented extended Kalman filter 
(AEKF) [62]. 

C. Unscented Kalman filter for nonlinear 
systems 

Other than EKF, the unscented Kalman filter (UKF) 
is also commonly used in nonlinear systems. UKF 
focused on using sampling and weight variables to 
perform the prediction and estimation in SLAM [27]. 
UKF has the ability to minimize the linearization error 

by applying the unscented transform (UT) to the 
approximation due to its consideration of high-order 
terms and avoiding the derivation of Jacobian matrices 
[62][64]. When a nonlinear map is changed, UKF 
basically helps to determine which transformation 
allows approximation of the covariance and mean of 
random vectors of length 𝑛𝑛 by computing 𝜎𝜎-points or 
also known as 2𝑛𝑛+1 points [61][64].  

Some research clearly shows that UKF is precise 
when encountering Gaussian noises during 
approximations up to third order and precise up to 
second order in terms of covariance estimation, while 
EKF is only able to precisely accomplish those estimates 
in the first order only [61][64]. It is also clearly shown 
that UKF is more accurate than EKF in robot tracking 
applications [27] and robot position reconstruction, 
due to its approximation properties are far superior to 
EKF [64]. 

Similar to EKF, UKF also tends to draw some 
disadvantages in its implementation. Accuracy in UKF 
tends to reduce when encountering large localization 
coverage and high velocity navigation [61]. Some 
researchers even concluded that UKF is slower than 
EKF in a nonlinear system [33]. In order to achieve 
perfect estimation, researchers have fused several 
methods with UKF to obtain an ideal result. Square root 
UKF (SRUKF) has been introduced to improve 
numerical stability, Masreliez-Martin UKF (MMUKF) 
is introduced to improve low tracking accuracy [27], 
and many more. Even though EKF seems not to be 
perfectly accurate compared to other algorithms, 
including UKF, it is still commonly used for SLAM-
related navigation applications such as 
positioning [65][66], map building [4][57] and many 
more. 

V. Linearization Techniques in SLAM 
EKF and UKF are widely known over other filters 

for their ability to perform nonlinear state estimation. 
Basically, both filters applied a specific linearization 
method to linearize a nonlinear system. As for EKF, 
analytical linearization or derivative-based method is 

 

Figure 5. Estimation process in Kalman filter and EKF. 
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used, while statistical linearization or derivative-free 
method is used in UKF [67][68]. There are also some 
other methods that have been proposed by previous 
researchers. 

Analytical or functional linearization specifically 
for EKF is based on the first order of the Taylor series 
expansion to linearize the nonlinear motion and 
observation model [69]. Previous researchers have 
developed an evolutionary method, which is the mean 
EKF (MEKF) that is based on the normal EKF to lessen 
the linearization error by replacing new formula that 
included real state vector, 𝑥𝑥𝑘𝑘 approach in the Jacobian 
matrix of the observation function, that will eventually 
increase the accuracy of the linear approximation [70]. 
All steps are continued as normal EKF. 

Statistical linearization is known as an alternative to 
the analytical or functional linearization, as it is a 
Jacobian-free method with no derivatives required. 
This method is also being used due to the Jacobian may 
not exist in all nonlinear applications, which can be 
difficult to determine analytically, and deriving it 
numerically may cause problems [71]. This method 
also has been used in cubature Kalman filter (CKF) [72], 
quadrature Kalman filter (QKF) [73], and UKF itself 
[74]. 

Both methods have their pros and cons in certain 
situations. Previous researchers have compared both 
methods with polynomial and trigonometric functions 
in order for the commonly encountered nonlinearities 
in estimation problems to be identified in terms of true 
mean and variance. The tests are run assuming the 
random signal to be Gaussian with known mean and 
standard deviation. In summary, the result of the test is 
not significantly winning on one side only, which can 
be seen as shown in Table 4 with the Monte Carlo 
method as its reference [75].  

Other linearization methods that have been 
proposed by other researchers are point-to-point 
linearization, which focuses on linearizing a nonlinear 
trajectory for representing the displacement terms of an 
object position in different frames of an image, where a 
fuzzy logic algorithm is used [76]. There is also a 

combination of EKF with discrete wavelet transform 
(DWT), which is called hybrid linearization. This 
method has been used in the medical field specifically 
to examine the condition of the human heart, where 
DWT helps in dividing and analyzing the 
electrocardiogram (ECG) continuous-time signal into 
different frequencies in order to denoise the signal [77]. 

VI. Initialization via Initial Covariance 
in SLAM 

In order to implement any Kalman filter technique, 
initialization is an important step that needs to be 
looked into. A variable called covariance needs to be 
determined due to its existence as one of the initializers 
for implementing the algorithm. Covariance can be 
defined mathematically as the relationship between two 
(2) random variables (𝑥𝑥 and 𝑦𝑦) that are dependent on 
one another. Covariance may exist in the range from 
−∞ to +∞ where it includes the mean of variable 𝑥𝑥 (�̅�𝑥) 
and mean of variable 𝑦𝑦 (𝑦𝑦�) [78]. Those values will be in 
the form of a matrix to illustrate the covariance matrix. 
The covariance value will be located at the diagonal of 
the matrix, with its off-diagonal denoted as zero due to 
diagonalization [79][80]. 

In EKF implementation, the initial covariance, P0, is 
an important value that needs to be determined to 
preserve the algorithm’s efficiency and avoid major 
reduction in the performance when inaccurate 
statistical analysis is implemented. Other than that, as a 
recursive algorithm, it is always assumed the initial 
variable to be known a priori, whereas in a real scenario, 
this does not usually happen, which can contribute to 
undiscovered bias due to the initialization error 
through the recursion. If it happened, it may produce a 
transient period, as shown in Figure 6, in which the 
algorithm produces unreliable estimates until sufficient 
measurements accumulate. During this transient phase, 
the Kalman gain fails to provide an optimal balance 
between model predictions and measurement updates, 
thus compromising both the optimality and 
unbiasedness of the Kalman filter. Such transients are 

Table 4. 
Analytical and statistical linearization method comparison [75]. 

Nonlinear function Mean cases Result 

Polynomial 𝑦𝑦 = 𝑥𝑥𝑘𝑘 Zero mean Statistical linearization provides good estimation for mean and 
variance estimate error 

Trigonometric 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑛𝑛(𝑥𝑥) Zero mean Statistical linearization provides good accuracy for variance 
estimate error 

 𝑦𝑦 = 𝑠𝑠𝑠𝑠𝑛𝑛(𝑧𝑧) Non-zero mean Statistical linearization provides good accuracy for mean estimate 
error while analytical linearization provides good accuracy for 
variance estimate error 
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particularly problematic in applications requiring rapid 
convergence or where measurements are sampled at 
large intervals, as initial errors, although eventually 
diminishing if the filter is stable, may lead to prolonged 
periods of unsatisfactory performance [55]. This 
problem can be solved by controlling the initial 
covariance, P0 , which can be set according to the 
confidence level of the mean value used [81]. 

Some researchers had already proposed several 
approaches for determining the initial covariance. 
Some examples that have been done previously are 
smoother-oriented initialization (step-forward 
strategy) [82], linear optimal unbiased filter (OUF) [83], 
and Bayesian inference technique, where those have 
their drawback in terms of delay estimation and are 
limited to a linear system only [55]. Other than that, the 
first-estimate Jacobian visual-inertial-ranging 
odometry (FEJ-VIRO) method has been proposed to 
minimize the localization drift problem by 
incorporating ultra-wideband (UWB) ranging 
measurement into the visual-inertial odometry (VIO) 
framework, by incorporating the initialization process 
that will estimate the covariance matrix [84]. The 
integration of a camera can also be part of the 
covariance approximation by validating the matching 
accuracy between experiment and simulation camera 
poses using an image processing algorithm to compare 
variances and scores of the image produced [85]. 

Several methods are used in determining the 
covariance for a system, nowadays not limited to 
robotic fields. Covariance can be determined for 
solving the near real-time (NRT) modelling problem of 
global ionospheric total electron (TEC), which involves 
the changes of spherical harmonic (SH) between 
epochs in the astronomy field [86]. Large sparse 
covariance matrix can be determined by using ℓ1 
penalized covariance estimator with the help of the 
majorization-minimization (MM) algorithm [87]. 

In the localization or mapping of robotics-focused 
research, some researchers used pre-formulated data 
such as EuRoC public dataset [88], identity matrix [54], 
or even a random value [89] rather than determining 
their initial covariance value for the purpose of 
simplicity. This is not very reliable due to not every 
system is suitable for using the covariance from the 
same dataset. This will eventually drive the result to 
become inaccurate. Therefore, more initialization 
approaches, especially in experimental approaches are 
need to be explored in the future, especially for a 
nonlinear system. 

VII. Conclusion 
SLAM remains a key component in mobile robotics 

as it is a very interesting field to be explored. This article 
reviewed the three main perspectives of SLAM 
navigation, focusing on mobile robotics through 
theoretical foundation, estimation problem, algorithms, 
and applications, along with the relevance of Kalman 
filters with their nonlinear extensions, linearization, 
and covariance initialization procedure. Although 
Kalman filter-based methods are widely used but each 
of their variants differs due to their individual 
simplicity, compatibility, and computational efficiency, 
which is challenging when applied in highly dynamic or 
uncertain environments. Important implementation 
factors such as the accuracy of the linearization process 
and the initialization of the covariance matrix 
significantly affect the performance and reliability of 
SLAM. The current literature lacks comprehensive 
comparisons between various types of SLAM 
estimation methods with their extensions, especially in 
filter-based SLAM. This highlights the need for more 
flexible and adaptive filtering approaches since it has 
become one of the common SLAM-based approaches 
explored nowadays. Future research should consider 

 

Figure 6. Transient period (shown by incorrect initial state) along the time step, k [55]. 
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combining classical filtering approaches with data-
driven methods, artificial intelligence (AI)-based, 
machine learning-based, or deep learning-based, and 
not to forget the impact of linearization and 
initialization in SLAM-based systems. Hence, 
improving robustness under various sensing 
conditions and extending SLAM applications into 
various engineering domains, such as autonomous 
vehicle navigation, inspection robotics, smart 
manufacturing systems, and allowing various fields to 
be explored, such as technical education, economic 
development, and human resource matters. Therefore, 
this article is intended as a stepping stone to guide 
further research and development in SLAM-based 
applications with practical and relevant 
implementations in the future. 
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