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Abstract 

This paper introduces a novel three-axis flexible tube sensor designed for force measurement in electric vehicle (EV) 
charging port alignment, utilizing long short-term memory (LSTM) networks. The research aims to develop and validate a 
flexible and accurate sensor system capable of predicting multi-axis forces during alignment. The sensor integrates a magnetic 
sensor at the center of a flexible tube to capture three-dimensional (3-D) magnetic field variations corresponding to force 
changes. Fabricated using thermoplastic polyurethane (TPU) via 3-D printing technology, the sensor leverages machine learning 
to predict force values along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes (𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦, 𝐹𝐹𝑧𝑧). Finite element method (FEM) analysis was conducted to assess the 
deflection characteristics of the flexible tube under various force conditions. Experimental results demonstrate that integrating 
LSTM significantly enhances the accuracy of force prediction, achieving an R² score exceeding 97 % for all axes, with mean 
squared error (MSE) values of 0.2819 for the 𝑥𝑥-axis, 0.3567 for the 𝑦𝑦-axis, and 2.8086 for the 𝑧𝑧-axis. The sensor is capable of 
measuring forces up to 30 N without exceeding its elastic limits. These findings highlight the sensor’s potential for improving 
alignment accuracy and reliability in automated EV charging systems. 

Keywords: finite element method (FEM) analysis; flexible tube sensor; force measurement; long short-term memory (LSTM) 
neural network; three-axis force prediction. 

 
 

I. Introduction 
Accurate force measurement is crucial in 

applications like electric vehicle (EV) charging port 
alignment [1][2]. Integrating force sensors in robotic 

charging systems ensures precise plugging, preventing 
mechanical damage and ensuring efficient operations. 
Research into robotic charging, particularly 
manipulators, is essential. A detailed discussion of the 
four degree of freedom (4 DOF) prismatic-revolute-
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revolute-revolute (PRRR) manipulator used in the 
robotic charging station (RoCharg-v1), as shown in 
Figure 1, including its counterweight mechanism and 
joint accuracy are available in [3][4]. These sources 
explore key design considerations, joint configurations, 
and precision control critical to optimal manipulator 
performance in alignment tasks. 

Most current force sensors, especially in end-
effectors, are rigid and struggle to handle dynamic, 
multi-directional forces [5], leading to misalignment 
and potential damage in systems like EV charging ports. 
Advances in flexible materials and sensor technology 
have significantly enhanced adaptability in dynamic 
environments, particularly in areas such as human-
machine interfaces and soft robotics [6]. Flexible 
sensors play a crucial role in improving a robot's 
perception and its ability to adapt to its surroundings 
by accurately estimating mechanical stimuli and 
deformation [7]. However, accurately measuring three-
axis forces in complex systems, such as EV charging 
ports, remains a challenge. These systems require a 
combination of precision and flexibility to achieve 
optimal performance and reliability. 

Research on remote center compliance (RCC) in 
EV charging ports focuses on improving automated 
system efficiency and reliability. Recent advancements 
include adaptive compliance control with fuzzy 
impedance rules, and enhancing manipulator 
performance by reducing tracking errors and insertion 

times [8]. A compliant plugging strategy with force 
feedback and admittance control addresses pose 
deviations, using a search algorithm to mitigate visual 
positioning errors [9]. Additionally, mobile EV 
charging stations (MEVCS) improve accessibility by 
offering flexible, location-independent recharging 
options [10]. 

Recent advancements in three-axis force 
measurement technologies have led to the development 
of more accurate and versatile sensors across various 
fields, including robotics, sports science, and medical 
diagnostics [11][12][13]. Flexible three-axis sensors 
integrated into footwear utilize deep learning for gait 
analysis [14]. Tri-axis force refactoring enhances 
robotic accuracy by centralizing measurements [15], 
while capacitive and inductive sensors improve 
precision in robotics and biomechanics [16][17]. 
Furthermore, research employing long short-term 
memory (LSTM) models to estimate forces in the hand 
and wrist based on integrated electromyography 
(iEMG) signals demonstrates significant potential for 
performance analysis [18]. However, challenges related 
to calibration and data processing persist. Similarly, 
RCC devices have advanced force measurement in 
robotic assembly through the use of six-axis sensors 
and passive RCC systems, although optimization 
remains an ongoing challenge [19][20][21]. 

Three-axis force sensors based on magnetic fields 
have made significant advancements. Various methods 

 
Figure 1. Implementing a flexible tube sensor for alignment in robotic charging. 
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have been employed to map the relationship between 
magnetic fields and forces, utilizing both conventional 
approaches and machine learning techniques 
[22][23][24]. One method developed a three-
dimensional (3-D) magnetic soft force sensor with a 
mean absolute error (MAE) of 11.7 mN and a mean 
squared error (MSE) of less than 1.16 × 10⁻⁴, with a 
force range of up to 1.5 N [25]. Another sensor achieved 
a maximum operating force of 5 N, with a relative 
deviation between 10 % and 35 %, and demonstrated 
better performance under moderate loading rates, 
achieving an MAE of 0.175 for training data and 0.201 
for testing data, though it underperformed at high force 
levels and steep loading rates [26]. A magnetic tactile 
sensor exhibited high sensitivity for normal forces 
(16 mV/N), shear forces (30 mV/N), and angular forces 
(81 mV/N), with minimal crosstalk, good repeatability 
(maximum error of 6.4 %), low hysteresis (8.4 %), and 
force ranges of 0 N to 20 N (normal), 0 N to 3.5 N 
(shear), and 0 N to 1.5 N (angular) [27]. Furthermore, 
a Hall-effect-based multi-axis sensor demonstrated 
high sensitivity, with a force range as low as 0.2 N and 
minimal crosstalk between axes [28]. These 
innovations are crucial for improving force 
measurement accuracy in applications such as EV 
charging and robotics. 

This paper introduces a novel three-axis flexible 
tube sensor fabricated from 3-D-printed thermoplastic 
polyurethane (TPU) for its flexibility and durability. 
The sensor integrates magnetic Hall-effect sensors to 
detect force variations along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes. LSTM 
networks are employed to enhance measurement 
accuracy, process time-series data, and adapt to real-
time force changes [29]. This design makes the sensor 
ideal for dynamic environments like EV charging ports, 
improving alignment accuracy, reducing misalignment 
risks, and enhancing overall charging reliability. 

The key contributions of this work are: First, the 
sensor's design and fabrication, using 3-D printing 
technology with TPU material, provides exceptional 
flexibility and resilience to mechanical stress. Second, 
the sensor's performance is validated through finite 
element method (FEM) analysis, which evaluates its 
deflection behavior under different loading conditions, 
ensuring its structural integrity. Third, magnetic Hall-
effect sensors are employed to accurately measure 
three-axis forces applied to the charging port, enabling 
precise force measurements in the 𝑥𝑥,  𝑦𝑦,  and 𝑧𝑧 
directions. Lastly, an LSTM-based machine learning 
model is utilized to predict forces (𝐹𝐹𝑥𝑥 , 𝐹𝐹𝑦𝑦 , 𝐹𝐹𝑧𝑧 ) from 
sensor data (𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦, 𝑀𝑀𝑧𝑧), significantly enhancing real-
time adaptability and improving the accuracy of force 
measurements. 

II. Materials and Methods 

A. Flexible tube sensor design 

In this study, the flexible tube sensor was designed 
to measure forces in 3-D (𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦, 𝐹𝐹𝑧𝑧) while maintaining 
flexibility. TPU was selected for its mechanical 
properties, such as flexibility and resilience under stress. 
The tube, a hollow cylinder, was designed with key 
geometric parameters, including outer radius ( 𝑟𝑟𝑜𝑜 ), 
inner radius (𝑟𝑟𝑖𝑖), wall thickness (𝑟𝑟𝑜𝑜-𝑟𝑟𝑖𝑖), and length (𝐿𝐿). 
These parameters ensured the tube could withstand 
multi-dimensional forces and perform under expected 
loading conditions. To analyze the tube’s ability to 
resist bending deformations, the moment of inertia 𝐼𝐼 of 
the tube’s cross-section was calculated as equation (1) 
[30]. 

𝐼𝐼 = 𝜋𝜋
4

(𝑟𝑟𝑜𝑜4 − 𝑟𝑟𝑖𝑖4) (1) 

The bending deflection of the tube under applied 
forces (𝐹𝐹) was calculated using beam deflection theory. 
The maximum deflection 𝛿𝛿 for a tube was determined 
using the equation (2). 

𝛿𝛿 = 𝐹𝐹𝐿𝐿3

3𝐸𝐸𝐸𝐸
 (2) 

with an 𝐸𝐸  is Young’s modulus. To evaluate the axial 
stress in the tube under forces applied along its length, 
the axial stress 𝜎𝜎𝑥𝑥 was calculated using equation (3). 

𝜎𝜎𝑥𝑥 = 𝐹𝐹𝑥𝑥
𝐴𝐴

 (3) 

where 𝐹𝐹𝑥𝑥 is the axial force, and 𝐴𝐴 is the cross-sectional 
area of the tube, given by 

𝐴𝐴 = 𝜋𝜋(𝑟𝑟𝑜𝑜2 − 𝑟𝑟𝑖𝑖2) (4) 

For a flexible tube, shear deformation can also be 
important, particularly if the tube is short relative to its 
diameter. The shear deflection (𝛿𝛿𝑠𝑠) can be given by 

𝛿𝛿𝑠𝑠 = 𝐹𝐹𝐿𝐿
𝐴𝐴𝑠𝑠𝐺𝐺

 (5) 

where 𝐴𝐴𝑠𝑠  is the shear area of the tube, which can be 
approximated for thin-walled tubes as 

𝐴𝐴𝑠𝑠 = 2𝜋𝜋𝑟𝑟𝑚𝑚𝑡𝑡 (6) 

where 𝑟𝑟𝑚𝑚 is the mean radius, 𝑡𝑡 is the wall thickness, 𝐺𝐺 
is the shear modulus of the TPU, and 𝐿𝐿 is the length of 
the tube. 

For torsional loading, the angle of twist 𝜃𝜃  was 
calculated to assess the tube’s resistance to twisting 
forces [30]. The angle of twist was determined using 
equation (7) 

𝜃𝜃 = 𝑇𝑇 𝐿𝐿
𝐺𝐺
𝐽𝐽 (7) 

𝐽𝐽 = 𝜋𝜋
2

(𝑟𝑟𝑜𝑜4 − 𝑟𝑟𝑖𝑖4) (8) 
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where 𝑇𝑇  is the applied torque and 𝐽𝐽  is the polar 
moment of inertia. For cases where the tube was 
subjected to combined forces in the 𝑥𝑥,  𝑦𝑦,  and 𝑧𝑧 
directions, the total deflection 𝛿𝛿𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡  was calculated 
using the equation (9). 

𝛿𝛿𝑡𝑡𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 = �𝛿𝛿𝑥𝑥2 + 𝛿𝛿𝑦𝑦2 + 𝛿𝛿𝑧𝑧2 (9) 

where 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦𝑦, and 𝛿𝛿𝑧𝑧 are the deflections in the 𝑥𝑥, 𝑦𝑦, and 
𝑧𝑧  directions, respectively. This provided a 
comprehensive understanding of the tube’s 
deformation under multi-dimensional loading 
conditions, ensuring the design was robust enough to 
handle operational forces in practical applications. 

1) Material and fabrication 

The flexible tube sensor is fabricated using TPU, 
which was chosen for its flexibility, durability, and high 
resistance to fatigue and wear. TPU’s elasticity, 
abrasion resistance, and ability to perform well in 
varied environments make it ideal for this application. 
Its Young's modulus (𝐸𝐸) (10 Mpa to 100 MPa) provides 
a balance between stiffness and flexibility, while a 
Poisson’s ratio ( 𝜈𝜈 ) of 0.48 allows it to withstand 
deformation under tension. With a density (𝜌𝜌) of 1.1 
g/cm³ to 1.25 g/cm³ and a shear modulus (𝐺𝐺) of 3 MPa 
to 40 MPa, TPU is lightweight yet strong. During 3-D 
printing, TPU filaments with a Shore hardness of 85A-
98A are used at 220 °C to 250 °C, with a bed 
temperature of 40 °C to 60 °C, ensuring proper 
adhesion for applications like gaskets, protective cases, 
and flexible prototypes [31][32]. 

2) Magnetic sensor 

The CJMCU-90393, a high-precision three-axis 
magnetic sensor, detects small variations in magnetic 
fields corresponding to forces along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axes. 
It measures field strengths from 5 mT to 50 mT with a 
resolution of up to 0.161 μT per least significant bit 
(LSB). With a sampling rate of 500 Hz and low power 
consumption (100 μA active, 1 μA to 2 μA idle), it is 
ideal for compact, power-sensitive systems like robotic 
alignment and contactless sensing applications [33][34]. 
Embedded in the center of a flexible tube, the sensor 

tracks field variations caused by deformations, enabling 
3-D force measurement. FEM analysis is used for 
deflection of flexible tube sensor. 

3) FEM analysis 

In this study, FEM analysis was used to evaluate the 
behavior of a flexible tube sensor designed to measure 
forces in one-dimension (1-D) (𝐹𝐹𝑦𝑦 ). The tube, made 
from TPU, was modeled using key material properties: 
elastic modulus of 26 MPa, density of 1,225.49 kg/m³, 
and tensile strength of 39 MPa. The analysis employed 
the hyperelastic Blatz-Ko model to simulate the non-
linear elastic response of the TPU under applied forces. 

The governing elasticity equations used in the FEM 
analysis relate to stress, strain, and displacement 
through Hooke's law [35]. The relationship between the 
stress 𝜎𝜎 and strain 𝜀𝜀 is expressed as 

𝜎𝜎 = 𝐸𝐸 ∙ 𝜀𝜀 (10) 

The strain-displacement relationship in 3-D was 
defined as equation (11). 

𝜀𝜀𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑢𝑢𝑖𝑖
� (11) 

where 𝑢𝑢𝑖𝑖  represents the displacement components in 
the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions. These equations are used to 
analyze the deformation of the tube when forces are 
applied in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions. The ends of the 
tube are constrained to prevent any movement, 
simulating fixed boundary conditions. Forces were 
applied to simulate the expected loading scenarios in 
the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions, respectively. 

The tube geometry was discretized into finite 
elements, using a fine mesh to ensure accuracy in high-
stress regions. Post-processing included von Mises 
stress analysis to confirm the TPU material stayed 
within its elastic limits, and strain energy distribution 
was evaluated to observe deformation under various 
loads. This FEM analysis provided critical insights into 
the tube’s ability to measure forces in 3-D and 
confirmed its structural integrity for real-world 
applications. The simulation process is shown in 
Figure 2. 

B. LSTM modeling 

1) Input data and pre-processing 

The input to the LSTM model consists of time-
series data from Hall-effect sensors embedded in the 
flexible tube. The raw magnetic field data is pre-
processed to normalize values, improving accuracy and 
training efficiency. Data is collected from a Flexible 
Tube Sensor mounted in parallel with an AFT200-D80-
C force per torque (F/T) sensor (see Figure 3), 
capturing the relationship between magnetic field 

 
Figure 2. Block diagram for conducting FEM analysis for a flexible 
tube sensor. 
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variations and force. A moving average filter is applied 
to reduce noise, enhancing the dataset for accurate 
force prediction by the LSTM model. 

Before model training, the data undergoes pre-
processing. Any damaged or not a number (NaN)-
containing datasets are inspected and filled with the 
mean values. Normalization is also performed to 
ensure that all features are on the same scale using 
standardization. This process is crucial for the model as 
a well-prepared dataset enhances the quality of the 
trained model. Next, the data is split into training and 
testing sets with an 80 % to 20 % ratio, ensuring that the 
model is tested on data it has not previously 
encountered. 

2) LSTM network architecture 

The LSTM model is structured with an input layer, 
one or more hidden LSTM layers, and an output layer. 
The core LSTM operations are defined by equation (12) 
to equation (21) [36], which control how the model 
processes the magnetic field input to predict forces. 

a) Forget gate 

Determines what information from the previous 
time step's cell state 𝐶𝐶𝑡𝑡−1 should be discarded: 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (12) 

𝑥𝑥𝑡𝑡 = �𝑀𝑀𝑥𝑥,𝑀𝑀𝑦𝑦,𝑀𝑀𝑧𝑧� (13) 

where 𝑓𝑓𝑡𝑡  is forget gate, 𝑊𝑊𝑓𝑓  is the weight of the 
forget gate, 𝑥𝑥𝑡𝑡  represents the magnetic field 
input at time 𝑡𝑡, 𝑏𝑏𝑓𝑓 is bias of the forget gate. 

b) Input gate 

Determines what new information will be added 
to the cell state: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (14) 

�̂�𝐶𝑡𝑡 = tanh(𝑊𝑊𝑐𝑐 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (15) 

where 𝑖𝑖𝑡𝑡 is input gate, 𝑊𝑊𝑖𝑖 and 𝑊𝑊𝑐𝑐 are weights, 𝑏𝑏𝑖𝑖 
and 𝑏𝑏𝑐𝑐  are biases. The input gate controls the 
flow of new information into the memory cell, 
while the candidate cell state �̂�𝐶𝑡𝑡  captures the 
influence of the magnetic field data. 

c) Cell state update 

The new cell state 𝐶𝐶𝑡𝑡  is updated based on the 
input and forget gates: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∙ �̂�𝐶𝑡𝑡 (16) 

d) Output gate 

Controls the output of the cell state to the next 
hidden state: 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (17) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ tanh𝐶𝐶𝑡𝑡 (18) 

where 𝑜𝑜𝑡𝑡  is output gate, 𝑊𝑊𝑜𝑜  and 𝑏𝑏𝑜𝑜  are the 
weight and bias for the output gate. The hidden 
state ℎ𝑡𝑡  is then passed to the output layer to 
generate the predicted forces. 

3) Force prediction 

After processing the magnetic field data through the 
LSTM network, the output layer predicts the 
corresponding forces (𝐹𝐹𝑥𝑥 , 𝐹𝐹𝑦𝑦 , 𝐹𝐹𝑧𝑧 ) at each time step, 
given by: 

𝐹𝐹�𝑡𝑡 = 𝑊𝑊𝑜𝑜𝑢𝑢𝑡𝑡 ∙ ℎ𝑡𝑡 + 𝑏𝑏𝑜𝑜𝑢𝑢𝑡𝑡 (19) 

𝐹𝐹�𝑡𝑡 = �𝐹𝐹�𝑥𝑥 ,𝐹𝐹�𝑦𝑦,𝐹𝐹�𝑧𝑧� (20) 

where 𝐹𝐹�𝑡𝑡  represents the predicted forces, 𝑊𝑊𝑜𝑜𝑢𝑢𝑡𝑡  is the 
weight matrix for the output layer, 𝑏𝑏𝑜𝑜𝑢𝑢𝑡𝑡 is the bias for 
the output layer. 

4) Training the LSTM model 

The LSTM model is trained using a dataset that 
includes various force measurement conditions to 

 
Figure 3. Installation of a flexible tube sensor paralleled with an F/T sensor is for data set creation and validation purposes. 



H.M. Saputra et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 15 (2024) 208-219 213 

ensure robustness. The dataset maps magnetic field 
inputs (𝑀𝑀𝑥𝑥,  𝑀𝑀𝑦𝑦,  𝑀𝑀𝑧𝑧)  to corresponding force 
measurements (𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦, 𝐹𝐹𝑧𝑧). By learning from past data 
points, the LSTM model improves accuracy in 
predicting forces from real-time sensor readings. The 
model focuses on time-series data, capturing the 
relationship between magnetic field variations and 
force outputs. The training minimizes the MSE 
between predicted and actual forces to enhance 
prediction accuracy [37]. 

MSE = 1
𝑛𝑛
∑ ��𝐹𝐹𝑥𝑥,𝑡𝑡 − 𝐹𝐹�𝑥𝑥,𝑡𝑡�

2 + �𝐹𝐹𝑦𝑦,𝑡𝑡 − 𝐹𝐹�𝑦𝑦,𝑡𝑡�
2 +𝑛𝑛

𝑡𝑡=1

�𝐹𝐹𝑧𝑧,𝑡𝑡 − 𝐹𝐹�𝑧𝑧,𝑡𝑡�
2
� (21) 

where 𝑛𝑛 is the number of time steps; 𝐹𝐹𝑥𝑥,𝑡𝑡, 𝐹𝐹𝑦𝑦,𝑡𝑡, 𝐹𝐹𝑧𝑧,𝑡𝑡 are 
the actual forces; 𝐹𝐹�𝑥𝑥,𝑡𝑡, 𝐹𝐹�𝑦𝑦,𝑡𝑡, 𝐹𝐹�𝑧𝑧,𝑡𝑡 are the predicted forces. 
The model is trained using gradient descent, adjusting 
the weights and biases to minimize the loss function. 

5) Model performance evaluation 

The LSTM model’s performance is evaluated by 
comparing predicted forces with actual measurements 
using MSE and the coefficient of determination (𝑅𝑅²). 
MSE quantifies the average difference between 
predictions and actual values, while 𝑅𝑅²  indicates the 
proportion of variance explained by the model. To 
assess adaptability in dynamic conditions like EV 
charging ports, 20 % of the dataset is reserved for 
validates. This evaluates the model's accuracy in real-
time applications such as robotic alignment and 
informs further optimization for improved precision. 

III. Results and Discussions 
This section presents the results and analysis of the 

proposed three-axis flexible tube sensor. FEM analysis 
highlights the sensor's deflection behavior under 
various loads, with the tube design shown in Figure 4. 

The sensor's real-time performance is evaluated, 
focusing on the effectiveness of the LSTM model in 
predicting forces in dynamic environments. The 
discussion compares the sensor with existing 
technologies, demonstrating how it addresses 
limitations in flexibility and precision for multi-axis 
force measurement, particularly in EV charging port 
applications. 

A. FEM analysis results 

The simulation was conducted to determine the 
stress and displacement of the sensor when subjected to 
a load. Figure 5 shows the displacement of the sensor 
under a load of 30 N maximum. According to the 
simulation, the deformation of the sensor reaches 
3.16 cm at the front, indicated by the red color in 
Figure 5(a). This significant displacement is largely due 
to the elastic properties of the TPU material used in the 
sensor. 

Figure 5(b) presents two graphs that depict the 
relationship between stress and force as well as 
displacement and force. Both graphs exhibit a linear 
relationship. In the stress vs force plot, the stress 
steadily increases with the applied force, demonstrating 
that the material operates within its elastic region for 
forces ranging from 0 N to 30 N. The stress reaches 
approximately 1.5 × 105 N/m² at 30 N, indicating that 
the material adheres to Hooke's law, maintaining 
proportionality between stress and applied force [35]. 
Similarly, the displacement vs force graph reveals a 
linear increase in displacement, which reaches 3 cm at 
the maximum applied force of 30 N. This consistent 
linearity suggests uniform deformation of the material 
without exceeding its elastic limit. Both graphs confirm 
that the flexible tube sensor is functioning as intended, 
with predictable elastic behavior and structural 
integrity maintained across the tested force range. 

 
Figure 4. Design of a Flexible tube sensor in parallel with a F/T sensor and its coordinate axes. 
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B. LSTM model performance 

The training results indicate that the LSTM model 
has successfully mapped the relationship between the 
magnetic field and force for each axis (𝐹𝐹𝑥𝑥, 𝐹𝐹𝑦𝑦, 𝐹𝐹𝑧𝑧). The 
system employs sequential data processing with a 
timestep of 10. The use of StandardScaler improved the 
model’s performance by normalizing the data to 
maintain a consistent scale. The dataset used in this 
study consists of 17,293 rows. Utilizing the train-test 
split technique, 20 % of the dataset (3,458 rows) was 
allocated for validation to ensure an objective 
evaluation of the model's generalization capability [38]. 

In Figure 6, the loss graph shows a consistent 
decrease for both training and validation losses, 
stabilizing around 60 epochs. This indicates that the 
model has optimally identified patterns in the data 
without overfitting, as evidenced by the minimal 
difference between the training and validation losses. 
Additionally, the graph shows that training stopped at 
146 epochs, indicating the activation of early stopping 
due to no improvement in validation loss for 10 
consecutive epochs. 

Figure 6 also demonstrates that the LSTM model 
performed effectively and reliably during the training 
process. The graph indicates that the model successfully 
achieved convergence, with training and validation loss 
values approaching zero. This is attributed to the 
model's ability to capture data patterns with high 
accuracy. The minimal difference between training and 
validation losses further reflects effective regularization, 
enabling the model to generalize well when tested on 
previously unseen data. 

Figure 7 illustrates the comparison between the 
actual and predicted force values along the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 
axes based on the training results. The three graphs in 
Figure 7 represent the testing results of 250 samples, 
derived from 20 % of the dataset used for model 
validation. In Figure 7(a), the actual force (𝐹𝐹𝑥𝑥) ranges 
between approximately -10 N to 10 N, while the 
predicted values generally follow this range, though 
there are some deviations where the predicted values 
are higher or lower. For instance, at sample index 2,800, 
the predicted value undershoots to around 5 N, while 
the actual value is closer to 7 N. In Figure 7(b), for the 

 
(a)      (b) 

Figure 5. Finite element analysis (FEA) of the flexible tube sensor assembly under a force in the Y-axis: (a) deformation with displacement magnitude 
contours; (b) stress and displacement. 

 
Figure 6. Training loss vs validation loss during model training. 
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𝑦𝑦-axis (𝐹𝐹𝑦𝑦), the actual force fluctuates between -20 N 
and 15 N, and the predicted values follow the overall 
trend but tend to smooth out sharper variations, 
especially between indices 2,850 to 2,900. Lastly, in 
Figure 7(c), the actual force on the 𝑧𝑧-axis (𝐹𝐹𝑧𝑧) varies 
between -30 N and 40 N, with predicted values closely 
following the general pattern but sometimes failing to 
capture peak variations, such as at sample index 2,950, 

where the actual force spikes to around 40 N, but the 
predicted force remains lower at about 35 N. These 
discrepancies indicate that while the model tracks 
general trends, it struggles to capture rapid force 
changes, particularly at higher magnitudes fully. 

The model evaluation using MSE and 𝑅𝑅²  score 
confirms that the training produced a well-performing 
model, as illustrated in Figure 7(a) to Figure 7(c). For 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Comparison between actual and predicted force values on the three axes within a certain range during training: (a) performance on the 
𝑥𝑥-axis; (b) performance on the 𝑦𝑦-axis; (c) performance on the 𝑧𝑧-axis. 
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the 𝐹𝐹𝑥𝑥 axis, the model achieved an MSE of 0.1132 and 
an 𝑅𝑅²  score of 0.9886. On the 𝐹𝐹𝑦𝑦  axis, the MSE was 
0.4166, with an 𝑅𝑅² score of 0.9819. For the 𝐹𝐹𝑧𝑧 axis, the 
MSE was 1.6058, and the 𝑅𝑅²  score reached 0.9856. 
Overall, the model can be considered effective, given 
that all 𝑅𝑅² scores exceed 0.98 and the MSE values are 
relatively low, suggesting an absence of overfitting in 
the model. However, the MSE for the 𝐹𝐹𝑧𝑧  axis is 

significantly higher than the other axes, which may be 
attributed to greater variation or a wider range in the 𝐹𝐹𝑧𝑧 
data compared to the 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 axis. 

The trained LSTM model was subsequently tested 
using new data with the same format as the dataset used 
during training. The test data consists of 2,000 rows 
that were not included in the model training process. 
Figure 8 presents a section of the graph showing the 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Testing results depicting force measurements along the three axes: (a) force on the 𝑥𝑥-axis; (b) force on the 𝑦𝑦-axis; (c) force on the 𝑧𝑧-axis. 
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LSTM model testing results. Figure 8(a) presents the 
testing results of the model for the 𝐹𝐹𝑥𝑥  axis. It can be 
observed that the model predicts the force quite 
accurately, and the predicted values (dashed orange 
line) closely follow the actual data (blue line). The 
deviation between the predicted and actual values 
appears to be evenly distributed across the graph with 
relatively small magnitudes. Figure 8(b) presents the 
testing results for the 𝐹𝐹𝑦𝑦  axis, where the prediction 
pattern closely resembles the actual data pattern. 
However, slight deviations are observed around points 
of drastic changes. Figure 8(c) presents the testing 
results for the 𝐹𝐹𝑧𝑧  axis. The force prediction on the 𝐹𝐹𝑧𝑧 
axis demonstrates a predictive pattern that remains 
aligned with the actual pattern; however, several 
significant deviations can be observed at certain points, 
particularly in areas experiencing substantial changes 
in force. These large deviations are likely due to the 
much wider range of force values compared to the 𝐹𝐹𝑥𝑥 
and 𝐹𝐹𝑦𝑦 axes. 

The testing results were also evaluated using MSE 
and 𝑅𝑅² scores. The MSE value for the 𝐹𝐹𝑥𝑥 axis is 0.2819, 
with an 𝑅𝑅²  score of 0.9722, indicating excellent 
predictive performance for the force along the 𝑥𝑥-axis. 
The 𝐹𝐹𝑦𝑦  axis has an MSE of 0.3567 and an 𝑅𝑅² score of 
0.9795. While the MSE for the 𝐹𝐹𝑦𝑦 axis is slightly higher 
than that for the 𝐹𝐹𝑥𝑥  axis, it achieves a better 𝑅𝑅² score 
than 𝐹𝐹𝑥𝑥 . Lastly, for the 𝐹𝐹𝑧𝑧  axis, the model yielded an 
MSE of 2.8086 and an 𝑅𝑅² score of 0.9713. The MSE for 
the 𝐹𝐹𝑧𝑧 axis is significantly higher compared to 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦, 
suggesting that the model faces some challenges in 
predicting forces along the 𝐹𝐹𝑧𝑧 axis. 

The LSTM model demonstrates exceptional 
performance in predicting forces based on variations in 
magnetic field values, as evidenced by relatively low 
MSE values and 𝑅𝑅²  scores exceeding 97 % across all 
three axes, with a force measurement range of up to 30 
N for each axis. The small and evenly distributed 
deviations observed in the graphs for the 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 axes 
highlight the model's strong generalization capabilities, 
high consistency, minimal random errors, and 
outstanding accuracy. 

IV. Conclusion 
This research presents a novel approach for 

predicting multi-axis forces in a flexible tube sensor by 
combining Hall-effect sensors with an LSTM network. 
The sensor, fabricated from TPU, demonstrated high 
flexibility and resilience, allowing accurate 
measurement of forces in the 𝑥𝑥 , 𝑦𝑦 , and 𝑧𝑧  directions. 
The LSTM model achieved strong performance, with 
MSE values of 0.2819 (𝐹𝐹𝑥𝑥), 0.3567 (𝐹𝐹𝑦𝑦), and 2.8086 (𝐹𝐹𝑧𝑧), 
and 𝑅𝑅² scores exceeding 0.97 on all axes. FEM analysis 

further validated the sensor's capability, showing that it 
can withstand forces up to 30 N without exceeding the 
elastic limit, with a maximum stress of 1.5 × 10⁵ N/m² 
and a displacement of 3 cm. Despite the relatively 
higher MSE on the 𝐹𝐹𝑧𝑧 axis due to larger variations, the 
overall reliability of the model remains 
uncompromised. The findings are significant as they 
address challenges in improving the precision and 
reliability of automated EV charging port alignment 
systems. By reducing misalignment risks and 
enhancing operational robustness, this sensor design 
contributes to more efficient and reliable charging 
processes. Furthermore, this research lays a strong 
foundation for the advancement of hybrid models, 
particularly by integrating LSTM with support vector 
machine (SVM) to enhance force prediction accuracy. 
In addition to its current application in EV charging 
systems, the sensor design holds significant potential 
for broader use in dynamic environments. These 
include robotic assembly and soft robotics, where 
precise multi-axis force measurements are essential for 
ensuring reliability and efficiency in operations. 
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