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Abstract 

The advancement of autonomous vehicle technology has markedly evolved during the last decades. Reliable vehicle control 
is one of the essential technologies in this domain. This study aims to develop a proposed method for controlling an autonomous 
personal mobility vehicle called single-passenger electric autonomous transporter (SEATER) using non-linear model predictive 
control (NMPC). We propose a single-shooting technique to solve the optimal control problem (OCP) via non-linear 
programming (NLP). The NMPC is applied to a non-holonomic vehicle with a differential drive setup. The vehicle utilizes 
odometry data as feedback to help guide it to its target position while complying with constraints, such as vehicle constraints 
and avoiding obstacles. To evaluate the method's performance, we have developed the SEATER model and testing environment 
in the Gazebo simulation and implemented the NMPC via the robot operating system (ROS) framework. Several simulations 
have been done in both obstacle-free and obstacle-filled areas. Based on the simulation results, the NMPC approach effectively 
directed the vehicle to the desired pose while satisfying the set constraints. In addition, the results from this study have also 
pointed out the reliability and real-time performance of NMPC with a single-shooting method for controlling SEATER in the 
various tested scenarios. 

Keywords: model predictive control; autonomous robot; collision avoidance; robot operating system; non-linear 
programming. 

 
 

I. Introduction 

In the era of rapid technological advancement, self-
driving cars are one of the most significant disruptive 
technologies that will affect transportation [1]. The 
industry and research community continue to progress 

with self-driving car technology to discover new modes 
of transportation, increase road safety, and automate 
processes [2]. Developing appropriate control 
strategies is critical for increasing the potential of 
autonomous vehicles [3]. Model predictive control 
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(MPC) is a popular advanced control method that has 
been widely used and developed due to its capability of 
managing multivariable systems while considering 
physical and environmental restrictions and its use of 
optimization techniques [4]. 

Over the last decades, MPC has shown its capability 
of controlling complex systems [5] like under actuated 
systems [6], industrial processes [7], smart buildings [8], 
automation and autonomous systems [9], power 
electronics [10], mobile manipulation [11], and rescue 
robotic systems [12]. It can also deal with harsh 
conditions like bad weather [13] handle non-linear 
problems while supporting multi-input–multi-output 
(MIMO) systems [14], and for systems or processes in 
which safety is critical [15]. By enabling prediction in 
control, MPC helps in quick and effective decision-
making, improving autonomous vehicles' skills to 
operate in dynamic conditions [16]. 

The MPC methods have developed rapidly along 
with the advanced control with various numerical 
approaches to solve optimization problems [17]. In 
optimal control, field optimization problems are 
typically addressed using two main approaches: direct 
and indirect techniques [18]. The direct method 
transforms the optimal control problem into non-
linear programming (NLP) via suitable discretization 
techniques [19]. The single-shooting method is one of 
the simplest direct methods for solving MPC control 
problems. One example is controlling non-holonomic 
robots, as presented in [20]. This approach's main 
benefit is its simplicity and ability to integrate complex 
system models with reduced complexity [21].  

One of the most difficult tasks in the autonomous 
system field is maintaining the vehicle's motion 
stability while producing optimal paths [22]. 
Implementing an MPC controller with the single 
shooting approach has demonstrated its ability to meet 
this challenge by providing an optimal solution 
considering the vehicle's complex dynamics [23]. For 
example, the work presented in [24] uses an non-linier 
model predictive control (NMPC) approach for 
differential-drive wheeled mobile robots. This 
controller allows the robots to reach the target pose 
considering dynamic obstacles and physical constraints. 
The study presented in [25] also demonstrates that the 
MPC, which uses single-shooting, has a potential to 
perform well in terms of computational speed and is 
suitable for real-time applications. 

Our prior work presented in [26] introduced 
NMPC-based visual servoing method for the 
autonomous docking of the SEATER platform. This 
method uses real-time visual data to guide the vehicle's 
movements. Based on the simulation results, the 
proposed method could control the vehicle to generate 

optimal docking paths in various scenarios. This paper 
expands upon prior studies by integrating waypoints 
into the NMPC trajectory-following framework. In 
addition, the vehicle model and control system are 
developed in the Gazebo physics engine to enable 
realistic simulations that represent the vehicle's 
dynamic features. 

The main objective of this study is to develop a 
controller for the single-passenger electric autonomous 
transporter (SEATER) platform using NMPC approach. 
The NMPC aims to improve how SEATER is controlled, 
adjust to different situations, and maintain accurate 
positioning. 

More specifically, the contributions of this study are 
as follows: 

• The formulation of an NMPC method to address 
the autonomous navigation of the SEATER 
platform, including path following via waypoints. 

• The modelling of the SEATER platform within the 
Gazebo physics engine for simulation tests and to 
validate the formulated NMPC method. 

• Implementing the formulated NMPC controller 
via the robot operating system (ROS) framework 
on the SEATER platform. 

The next sections are organized as follows: Section 
II provides the materials and methods, discussing the 
NMPC problem setup and its implementation on the 
SEATER platform. Section III presents the 
experimental results and discusses their evaluations. 
Finally, Section IV sums up the key findings. 

II. Materials and Methods 

A. SEATER kinematic model and model 
discretization 

SEATER is an autonomous personal mobility 
vehicle equipped with a differential drive system and 
two independent rear wheels. This design enables fine 
control of speed and direction, resulting in good 
maneuverability. Controlling the speed of each 
individual driving wheel allows for a variety of 
trajectories. SEATER is classified as a non-holonomic 
system because of its inherent motion constraints. 
Non-holonomic systems include those that are unable 
to move in all directions due to constraints such as 
wheel configuration. The limitations affect the control 
design for such vehicles, requiring advanced control 
systems such as MPC for precise maneuvering [17] 

To represent the kinematics of SEATER, we use a 
basic unicycle model, as also presented in [26], wherein 
the state vector of the vehicle is defined as follows 
equation (1), 
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𝐱𝐱(𝑡𝑡) = �
𝑥𝑥(𝑡𝑡)
𝑦𝑦(𝑡𝑡)
𝜃𝜃(𝑡𝑡)

� (1) 

The initial two spatial components of the state 𝐱𝐱 
denote the vehicle's position in the plane (𝑥𝑥,𝑦𝑦) , 
whereas the angle 𝜃𝜃 indicates the vehicle's heading. 

The vehicle is controlled with input is defined as the 
following equation (2), 

𝐮𝐮(𝑡𝑡) = �𝑣𝑣(𝑡𝑡)
𝜔𝜔(𝑡𝑡)� (2) 

where 𝑣𝑣  represents forward velocity, and 𝜔𝜔  denotes 
angular velocity. 

The SEATER dynamics model �̇�𝐱(𝑡𝑡) is formulated in 
a continuous-time state space defined by the function 
𝑓𝑓 and the control input 𝐮𝐮(𝑡𝑡) as shown in equation (3) 
[27]. 

�̇�𝐱(𝑡𝑡) = 𝑓𝑓�𝐱𝐱(𝑡𝑡),𝐮𝐮(𝑡𝑡)� = �
𝑣𝑣(𝑡𝑡) cos𝜃𝜃(𝑡𝑡)
𝑣𝑣(𝑡𝑡) sin𝜃𝜃(𝑡𝑡)

𝜔𝜔(𝑡𝑡)
� (3) 

This continuous model allows for a detailed 
representation of the vehicle's behavior, but to 
implement control algorithms effectively a discrete-
time model is often more practical. The Euler method 
is used to discretize the SEATER model, converting the 
continuous model into a form suitable for digital 
computation and control [26]. The reformulated 
discrete system equations are provided in equation (4). 

𝐱𝐱(𝑘𝑘 + 1) = 𝑓𝑓(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘)) (4) 

Eulerian discretization goes further by numerically 
solving ordinary differential equations (ODEs), as 
shown in equation (5). 

�
𝑥𝑥(𝑘𝑘 + 1)
𝑦𝑦(𝑘𝑘 + 1)
𝜃𝜃(𝑘𝑘 + 1)

� = �
𝑥𝑥(𝑘𝑘)
𝑦𝑦(𝑘𝑘)
𝜃𝜃(𝑘𝑘)

� + 𝛥𝛥𝛥𝛥 �
𝑣𝑣(𝑘𝑘)𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃(𝑘𝑘)�
𝑣𝑣(𝑘𝑘)𝑐𝑐𝑠𝑠𝑠𝑠�𝜃𝜃(𝑘𝑘)�

𝜔𝜔(𝑘𝑘)
� (5) 

Using this approach the next state (𝑘𝑘 + 1) of the 
robot or vehicle can be predicted based on the current 
state at the time 𝑘𝑘. The calculation adds the product of 
the sampling time ∆𝛥𝛥 , linear velocity 𝑣𝑣 , and the 
trigonometric components cos(𝜃𝜃(𝑘𝑘))  and sin(𝜃𝜃(𝑘𝑘)) 
to the current position, enabling the model to estimate 
the vehicle's updated state. 

B. NMPC cost function 

Model Predictive Control (MPC) is a control 
technique that optimizes a system's future behaviour by 
addressing an optimization problem at each control 
step. MPC uses a system dynamics model to predict a 
series of control inputs across a time interval known as 
the prediction horizon [28]. The control inputs then 
optimize the desired objective function under 

particular constraints, such as obstacle avoidance 
constraints. NMPC is an effective method for 
managing complex non-linear systems with 
multiple objectives and constraints [29]. 

The optimal control sequence that produces a state 
𝐱𝐱(𝑘𝑘) that is close to the reference value (set point) 𝐱𝐱𝑟𝑟 
for 𝑘𝑘 = 0, … ,𝑁𝑁 − 1  is determined through an 
optimization process aimed at minimizing the cost 
function, 𝑙𝑙(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘))  [15]. This cost function 
calculates the error between the current state 𝐱𝐱(𝑘𝑘) and 
the reference  𝐱𝐱𝑟𝑟 . In addition, the cost function also 
calculates the error between the value of the applied 
control, 𝐮𝐮(𝑘𝑘) , and the control target 𝐮𝐮𝑟𝑟 . The square 
norms of each element are computed and then summed 
together, as formulated in equation (6). A weighting 
matrix that includes 𝑄𝑄 (the state cost weighting matrix) 
and 𝑅𝑅  (the control effort weighting matrix) is also 
incorporated. The weighting matrix in the cost function 
can be fine-tuned to adjust the control performance 
[30]. In this study, the weighting matrices 𝑄𝑄  and 𝑅𝑅 
were defined as fixed variables, with 𝑄𝑄  set such that 
𝑄𝑄[0,0] = 1,  𝑄𝑄[1,1] = 5,  𝑄𝑄[2,2] = 0.1, and 𝑅𝑅 set such 
that 𝑅𝑅[0,0] = 0.5, 𝑅𝑅[1,1] = 0.05. 

𝑙𝑙(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘)) = ‖𝐱𝐱(𝑘𝑘) − 𝐱𝐱𝑟𝑟‖𝑄𝑄2 + ‖𝐮𝐮(𝑘𝑘) − 𝐮𝐮𝑟𝑟‖𝑅𝑅2  (6) 

The MPC formulation integrates motion planning 
and trajectory tracking, generating the control input 
based on the optimal control problem (OCP) problem 
[31]. The OCP aims to determine the control sequence 
that minimizes the cost function [32]. In this work, the 
OCP is formulated and solved as NLP problem. The 
standard NLP framework for numerical parametric 
optimization is formulated in equation (7) [33]. 

𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑖𝑖𝑖𝑖  ∶     𝐽𝐽𝑁𝑁(𝐱𝐱, 𝐮𝐮) = ∑ 𝑙𝑙�𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘)�𝑁𝑁−1
𝑘𝑘=0  (7) 

𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑡𝑡 𝑡𝑡𝑐𝑐 ∶        𝐱𝐱(𝑘𝑘 + 1) = 𝑓𝑓(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘)), 

𝐱𝐱(0) = 𝐱𝐱0 

𝐮𝐮(𝑘𝑘) ∈ 𝑈𝑈,    ∀𝑘𝑘 ∈ [0,𝑁𝑁 − 1],  

𝐱𝐱(𝑘𝑘) ∈ 𝑋𝑋,    ∀𝑘𝑘 ∈ [0,𝑁𝑁]  

According to equation (7), the cost function to be 
minimized, 𝐽𝐽 , represents the cumulative sum of the 
stage costs 𝑙𝑙(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘))  at each time step 𝑘𝑘 . This 
function quantifies the penalty or cost associated with 
the state 𝐱𝐱(𝑘𝑘) and the control input 𝐮𝐮(𝑘𝑘). The system 
must comply with the conditions specified by 𝐱𝐱(𝑘𝑘 +
1) = 𝑓𝑓(𝐱𝐱(𝑘𝑘),𝐮𝐮(𝑘𝑘)) and start from an initial condition 
𝐱𝐱(0). Additionally, the control 𝐮𝐮(𝑘𝑘) and the state 𝐱𝐱(𝑘𝑘) 
must stay within their designated sets 𝑈𝑈  and 𝑋𝑋  to 
guarantee that the solution is valid and meets all 
required constraints. Although extended prediction 
horizons may yield better results, they also heighten the 
demand for computational resources. Therefore, it is 
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essential to establish a balance in selecting a prediction 
horizon that ensures satisfactory performance while 
also preserving computational efficiency [34]. 

C. NMPC shooting method 

NMPC's shooting technique is one of the numerical 
approaches used to solve optimum control issues. This 
approach involves decomposing non-linear dynamical 
systems, using ordinary differential equation (ODE) 
solvers to solve differential equations repeatedly, and 
adjusting control inputs over a set period of time. This 
approach increases computational efficiency and 
enforces constraints while allowing for the modelling of 
complex systems. Because of these properties, it is 
effective for addressing optimal control problems in 
dynamic non-linear systems. 

NMPC's single-shooting method focuses on a single 
path to maximize the MPC objective and discover the 
optimal solution. This method is simple, relying on a 
single series of control activities. As a result, this study 
uses a single-shooting strategy to tackle the NMPC 
optimization problem. Single-shot optimization uses 
fewer dimensions than other approaches, which helps 
to accelerate the solution process [21]. 

Let 𝑤𝑤  denote the decision variable of the 
optimization process, representing the control vector 
comprising a sequence of control values from 𝑠𝑠0  to 
𝑠𝑠𝑁𝑁−1  over the finite horizon 𝑁𝑁 . These control values 
are the variables optimized in MPC as shown in 
equation (8). 

𝑤𝑤 = [𝑠𝑠0, … ,𝑠𝑠𝑁𝑁−1] (8) 

The robot state trajectory 𝑋𝑋𝑢𝑢(. )  along the 
horizon 𝑁𝑁 can be expressed as a recursive function of 
the control trajectory using the robot’s dynamic 
function as shown in equation (9). 

𝑋𝑋𝑢𝑢(. ) = 𝐹𝐹(𝑊𝑊,𝑋𝑋0, 𝑡𝑡𝑘𝑘) (9) 

𝐹𝐹(𝑤𝑤, 𝑥𝑥0, 𝑡𝑡0) = 𝑥𝑥0 

where 𝑋𝑋𝑢𝑢(. ) represents the state trajectory, dependent 
on the control vector 𝑊𝑊, initial state 𝑋𝑋0, and time 𝑡𝑡𝑘𝑘, 
𝐹𝐹(𝑊𝑊,𝑋𝑋0, 𝑡𝑡𝑘𝑘) describes the system's dynamics, showing 
how the system's state changes based on the applied 
control. 

min
𝑤𝑤

Φ (𝐹𝐹(𝑤𝑤, 𝑥𝑥0, 𝑡𝑡𝑘𝑘),𝑤𝑤) (10) 

subject to : (𝐹𝐹(𝑤𝑤, 𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑘𝑘),𝑤𝑤) ≤ 0 

Equation (10) shows the optimization problem that 
aims to minimize a cost function while keeping to 
system constraints. These limits can include physical, 
safety, and operational requirements the system must 
satisfy. In this study, to add the obstacle avoidance 

factor, the obstacle area is described by a circular 
boundary, as shown in equation (11). 

�(𝑥𝑥 − 𝑥𝑥𝑜𝑜𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜𝑜𝑜)2 −  r + 𝑟𝑟𝑜𝑜𝑜𝑜 ≥  0 (11) 

The safe distance from the obstacles to the vehicle 
can be determined using equation (11) as a constraint 
for obstacle avoidance. The vehicle's coordinates are 
(𝑥𝑥,𝑦𝑦), while those of the obstacle are (𝑥𝑥𝑜𝑜𝑜𝑜,𝑦𝑦𝑜𝑜𝑜𝑜), with 𝑟𝑟 
and 𝑟𝑟𝑜𝑜𝑜𝑜  representing the vehicle's and the obstacle's 
sizes, respectively. This constraint guarantees that the 
system stays away from the obstacle and follows a safe 
path by setting a safe zone around it. 

Algorithm 1 summarizes the NMPC approach used 
in this research. Initialization involves defining the 
target state 𝐱𝐱𝑟𝑟 , prediction horizon 𝑁𝑁, and initial state 
𝐱𝐱0 . The optimization process minimizes costs while 
satisfying the system’s constraints so that the minimum 
cost value obtained from the cost function 𝐽𝐽𝑁𝑁(𝐱𝐱�,𝐮𝐮∗) is 
𝑉𝑉𝑁𝑁. We achieve this by solving an OCP based on the 
estimated current state subject to the constraint 
(𝐹𝐹(𝑤𝑤, 𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑘𝑘),𝑤𝑤) ≤ 0  at each sample point. The first 
control input 𝐮𝐮0 from the optimized sequence is then 
applied to the system, and this loop continues at each 
time step to guide the system towards the desired state 
effectively. 

 
Algorithm 1: Non-linear model predictive control 
via single shooting method 
MPC init: 
Prediction horizon: = 𝑁𝑁 
Define the initial vehicle state: 
𝐱𝐱(0): = 𝐱𝐱0 
Define the target state: 𝐱𝐱𝑟𝑟 
Define the initial control: 𝐮𝐮0 
Apply 𝐮𝐮0to the system 
for every sampling instant k = 1, 2, ... do 
Estimate the states  𝐱𝐱(𝑘𝑘) 
Solve OCP: 
Find the optimal control horizon 
w= [u0, …, u (N-1)] 
which satisfies 
𝐽𝐽𝑁𝑁(𝐱𝐱�,𝐮𝐮∗) = 𝑉𝑉𝑁𝑁 
s.t.  
(𝐹𝐹(𝑤𝑤, 𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑘𝑘),𝑤𝑤) ≤ 0 
Apply 𝐮𝐮0 to the system 

III. Results and Discussions 
In order to evaluate the performance of the 

proposed NMPC implemented on the SEATER 
platform, various experimental scenarios were 
designed and carried out utilizing Python and Gazebo 
simulation environments. The computational 
hardware utilized for the simulations comprised an 
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Intel Core i7 processor with eight cores operating at a 
frequency of 2.30 GHz. To ensure consistent and 
reproducible testing conditions, the experimental setup 
examined scenarios featuring flat terrain and fixed 
obstacles. The NMPC algorithm was created in Python 
and employed the CasADi framework to address NLP 
issues through algorithmic differentiation [35]. 

1) Sampling time and prediction horizon evaluation in 
obstacle-free condition 

The first experiment in this study evaluates the 
effect of sampling time and prediction horizon value on 
controller performance. We used Python simulations 
to implement the NMPC controller to move the vehicle 
from its starting point (0, 0) to three target points: (1.5, 
1.5), (1.5, 0), and (1.5, -1.5). The complete iteration 
duration was set to 10 seconds, and the maximum 
iteration time had to be shorter than the sampling time. 
The performance requirements were a goal Euclidean 
distance of 0.4 meters and a rotation threshold of 0.4 
radians. To make the testing more realistic, 10 % 
control noise and a localization error of 0.02 m were 
introduced. The simulations were performed under 
obstacle-free conditions. 

Table 1 shows the performance of NMPC under 
obstacle-free settings. The results indicate that a shorter 
sampling time is associated with a rise in total iteration 

time, maximum duration, and inaccuracy in distance 
and rotation, all of which can lead to failure. The 
experiments with the sampling time parameter of 0.5 
seconds and prediction horizons 15, 20, and 25 have 
satisfied the performance requirements, while the 
experiments with the sampling time parameter of 0.5 
seconds have met the requirements in all tested 
prediction horizons. 

2) Sampling time and prediction horizon evaluation in 
obstacle condition 

The obstacle condition was then tested using 
parameters that met these thresholds in the previous 
experiments, with sampling time 0.1 along with 
prediction horizons 15, 20, and 25, and with sampling 
time 0.5 along with prediction horizons 5, 10, 15, 20, 
and 25. In these experiments, SEATER was modelled 
with a perimeter diameter of 0.3 m, and obstacles, each 
with a 0.2 m diameter, were positioned at (0.8, 0.3), (0.8, 
-0.3), and (1, 0). We also include a safety tolerance of 
0.05 m to prevent intersection into the model. The 
NMPC controller is designed to control the vehicle's 
movement from the starting point to the target pose, 
similar to the previous experiments. In these 
experiments, the vehicle must navigate without 
colliding with the obstacle during movement. 

Table 1. 
MPC data collection with obstacles-free. 

Parameter Performance 

ΔT N Total time iteration(s) Max time iteration (s) Euclidean position error (m) Rotation error (rad) 

0.01 5 10.002 0.007 1.086 0.021 

10 9.836 0.009 0.618 0.039 

15 9.031 0.017 0.222 0.004 

20 8.699 0.016 0.150 0.004 

25 8.295 0.016 0.129 0.010 

0.05 5 10.165 0.014 0.167 0.018 

10 6.961 0.015 0.079 0.003 

15 6.959 0.020 0.059 0.009 

20 6.963 0.015 0.051 0.008 

25 6.996 0.019 0.043 0.009 

0.1 5 6.818 0.014 0.084 0.025 

10 6.206 0.014 0.041 0.016 

15 1.523 0.017 0.039 0.014 

20 0.897 0.018 0.036 0.026 

25 0.802 0.026 0.034 0.028 

0.5 5 0.171 0.015 0.026 0.014 

10 0.222 0.026 0.021 0.028 

15 0.361 0.029 0.021 0.004 

20 0.390 0.032 0.025 0.019 

25 0.452 0.041 0.026 0.021 
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The performance results of the NMPC controller 
simulations in the presence of a static obstacle can be 
found in Table 2. The results indicate that optimal 
performance was attained with a sampling time of 0.5 
seconds and prediction horizons of 20 and 25, with 
N = 20 identified as the most effective setup. 

We subsequently assessed the stability of the 
controller to attain the desired control input value at 
the terminal state. At the target pose, we intend for the 
vehicle's control input values for both linear velocity 
and angular rate to be zero in order to achieve stability 
at the terminal state. Figure 1 illustrates the vehicle's 
performance and trajectory within a Python simulation. 

The simulation operates with specified parameters ΔT 
= 0.5 and N = 20 in conjunction with the presence of a 
static obstacle. The results show that the vehicle adheres 
to the speed limit and arrives at the destination with a 
terminal velocity of zero, indicating its stability. 

3) NMPC implementation and evaluation in Gazebo 
simulations. 

The NMPC controller developed for SEATER was 
then implemented and evaluated in the Gazebo 
simulation environment. The experiments were 
designed to demonstrate the performance of the 

  

(a) 

  

(b) 

  

(c) 

Figure 1. MPC performance with static obstacle: (a) turning left; (b) straight; (c) turning right. 
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proposed NMPC algorithm in a physics engine 
simulation environment. This procedure comprises 
integrating the NMPC system with the robot's dynamic 
model in the Gazebo environment. Figure 2 illustrate 
the SEATER model in the Gazebo simulation 
environment, contrasting with its real-world equivalent, 
thereby emphasizing the accuracy of the simulated 
representation. 

The experiments were designed to demonstrate the 
NMPC's ability to control SEATER accurately by 
adhering to predetermined waypoints, avoiding 
obstacles, and operating in real-time across a variety of 
scenarios. The optimal parameters derived from prior 
Python simulation experiments were applied within the 
Gazebo simulation environment. As can be seen in 
Figure 3 the testing was carried out on two different 
maps: one map was the obstacle-free scenario and the 
other map containes static obstacles placed at the 
predetermined position. 

The simulations were conducted utilizing the ROS 
framework in order to ensure easy integration and 
control. Odometry was employed to acquire the real-

time pose of SEATER, which served as the vehicle state 
input for the NMPC calculation. The control inputs 
generated from the NMPC optimization process were 
subsequently implemented to move the vehicle within 
the simulation environment. To obtain realistic results, 
a control noise of 15 % and a localization error margin 
of 0.04 m were used. 

Figure 4 compares the SEATER's real trajectory and 
the predetermined waypoints produced by the Gazebo 
simulations in two scenarios — one without obstacles 
and the other with a static obstacle. The trajectory 
comparisons show how well the NMPC control system 
performs when completing obstacle avoidance and 
path-following tasks. 

Under obstacle-free conditions — as can be seen in 
Figure 4(a) SEATER moved from (0, 0, 1.57) through 
waypoints at (0, 4.1, 1.57), (0, 4.1, 0), (17.2, 4.1, 0), (17.2, 
4.1, 1.57), and (17.2, 7.7, 1.57). The coordinates used are 
(x, y, and θ), where θ is the angular SEATER rotated in 
radians. It can be seen that SEATER was closely 
following the waypoint path. The path's smoothness 
indicates a low tracking error, proving that the 

Table 2. 
MPC data collection with static obstacles. 

Parameter Performance 

ΔT N Total time iteration (s) Max time iteration (s) Euclidean position error (m) Rotation error (rad) 

0.10 15 9.897 0.030 0.914 0.284 

20 4.912 0.033 0.787 0.007 

25 7.317 0.042 0.784 0.016 

0.50 5 3.566 0.023 0.796 0.027 

10 3.426 0.032 0.781 0.014 

15 3.480 0.039 0.765 0.032 

20 0.830 0.055 0.017 0.015 

25 0.820 0.075 0.018 0.021 
 

  
(a) (b) 

Figure 2. SEATER model: (a) in Gazebo; (b) actual platform. 
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controller maintains stability and accuracy under ideal 
circumstances. In the absence of environmental 
disturbances, the SEATER shows good performance in 
the desired tasks. 

In the presence of an obstacle scenario as shown in 
Figure 4(b) SEATER started at (0.0, 3.0, -1.57 ) and 
followed the same waypoints as the previous 
experiment (i.e., obstacle-free experiment), with an 

additional obstacle positioned at (0, 0). The generated 
path slightly diverges from the direct waypoint path 
while SEATER tries to avoid the obstacle and maintain 
a safe distance. This behaviour demonstrates the 
capability of the NMPC controller to achieve that path-
following objective while satisfying the obstacle 
avoidance constraint. 

  

(a) (b) 

Figure 3. Simulation map: (a) obstacle-free; (b) static-obstacle. 

 

(a) 

 

(b) 

Figure 4. Comparison The SEATER trajectory and the waypoint trajectory. (a) obstacle-free; (b) static-obstacle. 
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Table 3 and Table 4 show the quantified evaluation 
of how well SEATER followed its path with and without 
obstacles. To evaluate how well SEATER moved 
compared to the predetermined path, we used four 
measurement metrics: position error (m), rotation 
error (radians), max trajectory error (m), and average 
trajectory error (m) in obstacle-free scenarios and 
additional metric minimum Euclidean obstacle (m) in 
the obstacle presence scenarios. 

In general, it can be found from Table 3 that based 
on three tests in obstacle-free scenarios SEATER 
produces an average position error of 0.075 meters at 
the final position and an average rotation error of 0.105 
rad. This performance is acceptable for SEATER 
implementation, with a typical maximum error 
threshold of 0.25 meters and 0.2 rad for final position 
and rotation error, respectively. In terms of trajectory 
tracking performance, it can be seen from Table 3 that 
SEATER produces a max trajectory error of 0.145 
meters and an average trajectory error of 0.044 meters 
along the trajectory. This trajectory-tracking 
performance shows the controller's capability to follow 
a predefined trajectory in a narrow path — such as in 
corridors — with a maximum trajectory deviation of 
less than 0.5 meters. 

Table 4 gives a quick view of the findings of the 
experiments with the obstacle-presence scenarios. It 
can be found that, based on three tests, the SEATER 
trajectories produce similar performances to the 
obstacle-free scenarios in terms of position error (m), 
rotation error (radians), max trajectory error (m), and 
average trajectory error (m), with average values 
0.086 meters, 0.103 rad, 0.121 meters, and 0.028 meters, 
respectively. The performance measurements 
demonstrate that the NMPC controller sustains its 
performance despite a static obstacle. The results from 
Table 4 also show that SEATER produces the average 

minimum Euclidean obstacle of 0.758 meters, showing 
the controller's capability to keep SEATER away from 
collision with the obstacle. 

IV. Conclusion 

This study aims to develop a controller for the 
single-passenger electric autonomous transporter 
(SEATER) platform. The proposed control method 
uses NMPC with the single-shooting approach. The 
NMPC method is implemented and evaluated in 
Python simulation and Gazebo simulation 
environment. The experiments in the Python 
simulation indicate that using a short sampling time 
and prediction horizon in the NMPC single-shooting 
approach could limit the control system's capability to 
reach the desired target. Choosing the right sampling 
time and prediction horizon is key to balancing 
performance and computational efficiency. Based on 
several simulation experiments conducted on the 
Python simulation environment, the optimal sampling 
time and prediction horizon parameter values 
producing the best performance of the NMPC 
controller can be obtained. The experiments in the 
Gazebo simulation environment using the optimal 
sampling time and prediction horizon parameter values 
demonstrate the capability of the proposed NMPC 
controller to address trajectory-tracking tasks in a 
corridor environment with both obstacle-free and 
obstacle-presence scenarios. The experimental results 
show that the controller could achieve satisfied 
performance in terms of position error (m), rotation 
error (radians), max trajectory error (m), average 
trajectory error (m), and average minimum distance to 
obstacle (m). Future research should explore the 
implementation of the proposed NMPC controller in 
real-world settings. The results obtained from the 

Table 3. 
Error trajectory and error final seater position for obstacle-free. 

Number Euclidean position error (m) Rotation error (rad) Maximum trajectory error (m) Average trajectory error (m) 

1 0.049 0.105 0.223 0.057 

2 0.077 0.075 0.109 0.046 

3 0.099 0.136 0.105 0.028 

Average 0.075 0.105 0.145 0.044 

Table 4. 
Error trajectory and error final seater position for static-obstacle. 

Number 
Euclidean 

position error (m) 
Rotation error 

(rad) 
Maximum 

trajectory error (m) 
Average 

trajectory error (m) 
Minimum Euclidean 

obstacle (m) 

1 0.054 0.142 0.099 0.033 0.758 

2 0.108 0.104 0.114 0.024 0.825 

3 0.096 0.064 0.149 0.029 0.896 

Average 0.086 0.103 0.121 0.028 0.758 
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simulation experiments carried out in this study serve 
as a reference for guiding the parameter tuning process, 
aimed at achieving optimal performance of the 
proposed NMPC controller. 
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