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Abstract 

This research proposes a mechanism that enables the battery swapping station (BSS) to provide battery swap services for 
multiple types of batteries, termed battery heterogeneity, utilized in electric motorcycles. The number of batteries for each type 
is established. The battery charging cost is calculated in real time, and the station's profit is maximized by optimizing battery 
swap scheduling. The issues are modeled as a mixed-integer non-linear problem (MINLP), then linearized as a mixed-integer 
linear problem (MILP), using the grid electricity price from the real-time pricing mechanism to calculate the battery's 
charging/discharging cost. Swap scheduling is optimized using the rolling horizon optimization (RHO) approach, which takes 
into account a variety of constraints. These constraints include battery type, battery SoC, arrival time of the electric motorcycle, 
grid electricity pricing at time t, and battery power utilization. The long-short term memory (LSTM) predicts the electric 
motorcycles' arrival time at t+1 based on prior data. The results show that optimization scheduling generates a higher overall 
profit per day than unscheduled operation. Profit by the RHO-LSTM method is 23.77 % greater than by the RHO-Polynomial 
method and 0.26 % greater than by unscheduled operation. Furthermore, the number of batteries provided by the RHO-LSTM 
method is 40 % greater than by the RHO-polynomial method. 

Keywords: battery heterogeneity; electric motorcycle; mixed-integer linear problem; long-short term memory; rolling horizon 
optimization. 

 
 

I. Introduction 
The adoption of electric motorcycles in Indonesia 

has been accelerating, influenced by environmental 
sustainability goals [1]. Nevertheless, this upward trend 
presents significant challenges, including prolonged 
battery charging durations, congestion at charging 
facilities, and spatial constraints for infrastructure 
development. Battery swapping stations (BSS) offer a 

viable alternative by enabling rapid battery exchange, 
thereby minimizing user wait times and reducing 
spatial requirements. Furthermore, implementing 
optimized battery charging schedules during periods of 
low electricity demand can enhance operational 
efficiency and reduce energy costs for BSS operators. 

Currently, BSS remain limited in number and are 
typically designed to support only a single battery type 
or brand-specific configurations. This limitation 
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underscores the need for a BSS capable of 
accommodating heterogeneous battery types. Although 
extensive research has been conducted on BSS, few 
studies have addressed the design and operation of 
multi-brand battery compatibility. For instance, one 
study introduced a BSS model that supports 
heterogeneous batteries and implemented a dynamic 
charging schedule to enhance revenue generation [2]. 
Another investigation optimized battery charging 
schedules and swapping services through a reservation-
based system; however, this was limited to four-
wheeled electric vehicles [3]. The majority of BSS-
related research has focused on homogeneous battery 
systems for electric cars [4]. In contrast, battery-
swapping solutions for electric motorcycles are gaining 
prominence, with 369 BSS units reported across 
Indonesia as of 2022 [5]. In that study, an internet of 
things (IoT)-based BSS was developed for electric 
motorcycles, enabling real-time monitoring of battery 
parameters such as state of charge (SoC), state of health 
(SoH), temperature, current, and charging cycles. 
Additionally, [6] proposed an optimization model for 
electric motorcycle BSS using genetic algorithms (GA), 
demonstrating improvements in operational efficiency 
by optimizing battery scheduling and minimizing total 
operating costs while addressing both technical and 
economic considerations. 

Numerous studies have examined a wide range of 
forecasting techniques for predicting time series. For a 
variety of scenarios, machine learning and traditional 
models like autoregressive integrated moving average 
(ARIMA), autoregressive integrated moving average 
with exogenous variables (ARIMAX), and seasonal 
autoregressive integrated moving average with 
exogenous variables (SARIMAX) are used. Machine 
learning and deep learning are used to forecast the 
grid's demand response (DR) in order to determine 
more effective techniques [7][8]. The grid's electric load 
is predicted by comparing machine learning 
techniques, including k-Nearest Neighbors (kNN), 
Random Forest, Gradient Boosting, and neural 
network with long short-term memory (LSTM). To 
pick the best feature and determine the ideal time lags, 
respectively, the LSTM is paired with feature selection 
and GA [9]. The conventional model delineates optimal 
performance in time-series data. In comparison to 
traditional models, machine learning and deep learning 
models yield superior results in managing uncertainty 
and dynamic conditions. Convolutional neural 
networks (CNNs) are employed for semi-supervised 
time-series forecasting and classification through self-
supervised learning [10], where the results using the 
CNN model outperform other approaches, such as 
ConvLSTM and AttConvLSTM. The study employed a 

dataset characterized by short time periods, which 
aligns well with the temporal feature extraction 
capabilities of CNN-based architectures. Predicting the 
demand for electric vehicle charging is another 
application of machine learning, with a revolutionary 
deep long-short term memory (DLSTM) model that 
yields superior predictions due to a minimized mean 
square error [11]. The utilization of the LSTM 
methodology for forecasting battery-swapped demand 
and vehicle arrivals at BSS was discussed in a referenced 
work, whereby LSTM surpassed other applied methods 
[12]. Moreover, utilizing time-series data to forecast 
electric motorcycle arrival times, supervised machine 
learning, and deep learning models may be optimal 
selections.  

When optimization is used to solve the suggested 
model, the best outcome can be achieved. To determine 
the best distribution networks for several distributed 
generations (DGs), optimization approaches such as 
GA, particle swarm optimization (PSO), and hybrid 
optimization BF-PSO (butterfly-particle swarm 
optimization) are used [13]. The proximal policy 
optimization (PPO) method is another optimizer used 
to optimize the performance of every device in the 
energy replenishment station (ERS), which may be used 
for electric vehicle charging and battery swapping [14]. 

An optimizer known as rolling horizon 
optimization (RHO) repeatedly maximizes choices 
made within a certain time frame. This method solves 
the problem by using the predicted data at t+1. 
Additionally, it uses the prior iteration's optimization 
outcomes as input for the subsequent iteration. In order 
to improve the schedule of battery changing in a single 
day, RHO determines the best short-term solution, 
which is referred to as the horizon. When the input data 
in this system varies over time, issues are resolved using 
RHO that operates on time intervals in the resilience of 
active distribution networks (ADNs) [15], hinterland 
intermodal transportation [16], cogeneration energy 
systems of the grid [17], and energy supply and demand 
planning in microgrids [18]. These models employ 
RHO to optimize outcomes, and the results 
demonstrate that RHO can enhance the models to 
attain the optimal objective. 

This research presents the development of a BSS 
intended for electric motorcycles in response to the 
increasing prevalence of motorcycle usage in 
Indonesia. The station is architected to accommodate 
multiple battery types and operates without requiring 
prior reservations. An optimal battery scheduling 
mechanism is implemented to fulfill user swapping 
requests while maximizing station profitability, as 
determined through computational simulations. To 
support real-time decision-making, the system 
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forecasts electric motorcycle arrivals at time step t+1 
based on time-series data derived from recent historical 
arrival patterns. 

This research aims to develop an effective design 
and implement an efficient system for battery swapping 
stations (BSS) serving electric motorcycles by 
optimizing battery scheduling through an RHO-
LSTM-based approach under conditions of battery. 

II. Materials and Methods 
Charging stations for electric vehicles face a number 

of challenges, including queuing because the charging 
procedure is lengthy, and vehicle users must adhere to 
a time limit. Battery swap services are provided in an 
effort to shorten the recharging time of electric vehicles. 
This invention is the outcome of the long battery 
charging process. An innovative system for charging 
batteries at the swapping station is required. 

A. Battery heterogeneity at battery swapping 
stations 

The public electric vehicle battery swapping station 
(BSS) is classified into four types: single BSS, multiple 
BSS, combination of single BSS-BCS, and combination 
of multiple BSS - BCS [4]. In general, the battery swap 
station is exclusively intended for one type of battery 
from a certain electric vehicle, such as the Gogoro or 
Gesits electric motorcycles, with each BSS tailored 
especially to the motorcycle given by the manufacturer. 
The BSS to be designed is specified as being capable of 
battery swapping for more than one electric motorcycle 
manufacturer and/or battery type. As a result, the 
consumer base will expand.  

The decision-making scenarios in BSS are divided 
into five categories: charging schedule, service policy, 
construction and planning, dispatching and routing, 
and power management. In this study, the best 
charging schedule for the station will be studied further. 
Many studies have been undertaken to develop an 

optimal charging scheduling mechanism [4]. The 
population-based heuristic technique is employed for 
optimization [19], the RHO method for optimization 
[2], the genetic algorithm (GA) [6], and the hybrid 
algorithm, JAYA-BBA, to solve the bilevel optimal 
scheduling issue model [20]. The optimal operation 
schedule is intended for BSS and microgrids. The 
scheduling system employs a bilevel problem model 
with the alternative direction method of multipliers 
(ADMM) [21]. A charging schedule mechanism that 
takes into account the quality of service (QoS) of 
various BSSs has been developed [3]. The first and 
second studies discussed in this publication use more 
than one type of battery, which is uncommon in BSS 
research [2][3]. The presented bilevel model includes 
an upper-level problem that determines optimal 
charging and discharging schedules for aggregated 
BSSs. Meanwhile, the low level determines the reserve 
capacity pricing for each BSS. The bilevel model is 
developed as a mixed-integer linear problem (MILP) 
model in order to develop the best operating model for 
aggregated BSSs [22]. Modeling a fluid-based 
optimization framework improves battery charging 
and purchase procedures for BSS [23]. Pricing issues in 
BSS are also addressed by a three-tiered BSS pricing 
mechanism that takes into account the electric vehicle 
demand market clearing. To optimize BSS pricing, the 
three-level model considers the interaction of the 
distribution system operator (DSO), BSS, and electric 
vehicles (EVs) [24]. In Beijing, a BSS configuration and 
operating model with three charging points improves 
BSS profitability [25]. The optimal operating model of 
BSS with photovoltaics includes the BSS operation 
mechanism, the BSS load model, and the price 
mechanism, all of which strive to maximize the number 
of charged batteries [26]. These studies concentrate on 
four-wheeled electric vehicles. 

In this study, an optimal charging scheduling 
mechanism for two-wheeled electric vehicles is 
developed at a station with diverse batteries. Table 1 

Table 1. 
Comparison of characteristics in this study with previous ones.  

Features 
Operation model of BSS in previous research 

BSS in this research 
[2] [3] [6] [19] [20] [21] 

Battery heterogeneity v v x x x x v 

Battery charging characteristic v x v v x x v 

Battery degradation v x v x x v x 

Swap/charge scheduling v v v v v x v 

Multi BSS x v x x x x x 

Single BSS v x v v v v v 

Electric motorcycle x x v x x x v 

Semi-universal charger v x x x x x v 
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compares the features of the station to be designed to 
past studies. 

B. Battery swapping station model 

BSS with heterogeneous batteries is a battery swap 
station that supports many battery types and electric 
motorcycle brands. The batteries utilized will be the 
LiFePO4-constructed battery {60 V, 6 Ah} and the 
Gesits electric motorcycle {72 V, 20 Ah}. 

Each battery will utilize the same charger, even if the 
sockets are different. The Gesits battery will be charged 
using the manufacturer's charger socket, which will 
then be linked to a variable charger. The battery swap 
operation is carried out dynamically, which means that 
electric motorcycle riders will come immediately to the 
station to swap batteries. Batteries can be replaced with 
those that are completely charged or below 100% but 
not above the threshold. Empty batteries swapped by 
prior electric bikers will be charged to meet the next 
battery swap request. The RHO approach includes 
scheduled battery swapping. 

Battery swap scheduling is determined by the 
battery's charging characteristics. If the battery reaches 
a state of charge (SoC) of 70 % (ω), the charging current 
decreases, affecting the charging power for each 
battery. This charging characteristic is applicable to 
lithium-ion batteries. Figure 1 depicts the results of 
battery charging measurements with a variable charger. 
This charging method is sometimes referred to as the 
constant-current/constant-voltage charging strategy. 
The flat shape of the discharge curve in lithium-ion 
batteries implies that the voltage remains constant 
during the discharge process. The power used for 
battery charging will vary depending on the number of 
battery swap requests and the availability of fully 
charged batteries at the BSS. Each battery will be 
charged using the same charger. The batteries are 
charged using a variable charger. 

The profit earned by BSS will be maximized and 
balanced against the number of riders provided. Thus, 

BSS operational procedures will permit the sale of 
power to the grid. Aside from the proceeds of the 
battery swap, there will be additional BSS revenue. At 
the same time, the cost of charging the batteries will be 
reduced. The number of electric motorcycles served 
and the number of batteries switched at time t reflect 
the highest profit and minimal charging cost, 
respectively, when the electricity price is low and high. 

The BSS system model contains five assumptions, 
which include 1) Riders can apply for several battery 
swaps. 2) The battery is owned by BSS. 3) The battery 
cannot be swapped while it is charging or discharging. 
4) Batteries can be swapped if their state of charge is at 
least a certain level. 5) If the rider requests multiple 
battery swaps, the swapped batteries will have the same 
capacity. Figure 2 shows the BSS system structure. The 
number of battery slots is determined based on the 
historical data of electric motorcycle arrivals. 

C. Optimization model 

The battery swap operation is carried out 
dynamically, which means that electric motorcycle 
riders will come immediately to the station to swap 
batteries. Empty batteries swapped from the previous 
electric motorcycle will be charged to meet the 
upcoming battery swap request. The battery swap is 
scheduled using the RHO method. RHO optimization 
begins with identifying the period length parameter of 
the defined horizon; the optimization issue is then 
solved at time T=1, and the solution value is saved at 
time T. The optimization problem is then solved 
iteratively at the following T until T exceeds the 
previous T in the period [27]. RHO consists of three 
horizons: the current horizon, the forecasting horizon 
(u), and the scheduling horizon (T). In this system with 
a time slot t, the arrival of the electric motorcycle to the 
control horizon is taken into account, as is the 
prediction of the electric motorcycle' arrival at t+u. 
Figure 3 shows the schematic of RHO. The scheduling 
horizon is defined as the scheduling period T, which is 

 

Figure 1. Li-Ion battery charging curve by experiment. 
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made up of multiple time slots. A solution is found for 
each battery in the station. 

The forecasting horizon employs the LSTM for data 
prediction. LSTM is a deep learning neural network 
architecture based on the recurrent neural network 
(RNN) that models and predicts sequential data. LSTM 
can handle data with long-term relationships, which are 
frequently encountered as an issue in RNN. It has 
memory blocks called cells and three gates for 
managing memory contents. The gates in this approach 
are logistic functions with multiple weights. The three 
gates are the forget gate, the input gate, and the output 

gate. These gates are an extension of the RNN method 
designed to solve data problems with long-term 
dependencies. Each gate contains a sigmoid function 
that determines which data will be removed in each cell. 
The input gate determines which new inputs enter the 
cell state. The forget gate determines which value of the 
former output is forgotten and which is retained. The 
current input and prior output are used to determine 
the forgotten and remaining values. The output gate 
determines the value to be executed by using the state 
vector from the previous step [28]. Figure 4 shows a 
flowchart of the system. 

  

Figure 2. BSS system structure. 

 

 

Figure 3. Schematic of rolling horizon optimization. 
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The dynamic problem can be represented as a 
mixed-integer nonlinear problem (MINLP) and then 
linearized into a mixed-integer linear problem (MILP). 
The station's system optimizes profit as the objective 
component of MILP modeling. MILP is used to model 
the restrictions on the station's components. The 
limitations include battery type, battery SoC, battery 
swap status, battery charging state at time t, electric 
motorcycle arrival time, grid electricity pricing at time 
t, and each battery's power usage.  

The intended modelling will be solved inside the 
RHO's current horizon (C) in order to acquire optimal 
constraint values. The battery swap scheduling system 
uses the battery swap status and battery charging state 
at time t when the power price is low as decision 
variables. 

D. Real-time pricing mechanism 

The real-time pricing mechanism in BSS is 
dependent on the overall system load. The real-time 
pricing mechanism is defined as the sum of the grid 
load level (Pt

LL) and the traded electricity quantity 
(Pt

LL) between BSS and the grid multiplied by the grid 
charging reference price (Pt

LL) and divided by the 
average of load level (Pavg

LL ). The mathematical model is 
stated in equation (1). KBSS,t  is obtained by summing 

the charging (Pt,b
c ) and discharging power (Pt,b

d ) during 
charging-discharging schemes. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡 = 𝑃𝑃𝑡𝑡
𝐿𝐿𝐿𝐿 × ∆𝑡𝑡+ 𝐾𝐾𝐵𝐵𝐵𝐵𝐵𝐵,𝑡𝑡 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿  × ∆𝑡𝑡

 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝑟𝑟𝑟𝑟  (1) 

E. Mathematical model of MILP  

The mathematical model for a four-wheeled vehicle 
is constructed using MILP [2]. Conversely, a 
mathematical model is modified to account for the 
vehicle type, specifically an electric motorcycle, and the 
battery swap scheduling system, which consists of two 
dimensions: the set of times T and the set of batteries B, 
as it is explicitly designed for electric motorcycle 
Battery Swap Systems (BSS). The set of times T and the 
set of batteries B are known. The set T contains time 
slots t and the set B contains batteries with two battery 
types b, where b = {1, 2, 3, …,10}.  The set of battery 
types is represented by UI as a subset of B, where i={1,2}. 
The charger used for each battery type is represented 
by  gj as a subset of B, where j={1,2}. Charger g1  and 
Charger g2 are both variable chargers that are grouped 
based on the maximum charging power of each battery 
type. This mathematical modeling for battery swap 
scheduling aims to maximize the profit received by BSS 
in equation (2). 

 

Figure 4. Flowchart of the system at the station. 
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Profit is obtained from the revenue of battery swap 
activities and power sales to the grid by reducing the 
cost of charging batteries from the grid and the cost of 
battery degradation. Battery swap revenue has two 
price parameters, namely the battery swap price and the 
price of the difference between the SoC of the battery 
from the rider and the one being swapped. In the prior 
study, battery discharging income was calculated by 
multiplying the discharged power by the time-of-use 
electricity price [2]; in this research, the electricity price 
is derived using the real-time pricing mechanism in 
equation (1). The equations to get the value of the four 
variables can be seen in equation (3) to equation (6). 
Battery degradation cost is the reduction of battery 
capacity after a day has passed (NT = 480) multiplied by 
the battery degradation cost. The battery capacity 
decline model is created by observing how temperature, 
cycle, discharging rate, and DoD affect battery capacity 
reduction when discharging lithium-ion batteries [29]. 
Where R represents the gas constant and Temp denotes 
the absolute temperature. The degradation cost is 
calculated by multiplying the battery capacity loss by 
the battery degradation price indicated in equation (6). 
This MILP-based model's decision variables are the 
charging/discharging power and charging and swap 
state of each battery at time t, DV = [Pt,b

c , Pt,b
d , ct,b, st,b] . 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑂𝑂𝑂𝑂𝑂𝑂 ∶  

F = max(𝑅𝑅𝑂𝑂𝑂𝑂𝑠𝑠 + 𝑅𝑅𝑂𝑂𝑂𝑂𝑑𝑑 − 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑)   (2) 

𝑅𝑅𝑂𝑂𝑂𝑂𝑠𝑠 = �
∑ ∑ 𝑐𝑐𝑡𝑡,𝑏𝑏  ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑠𝑠𝑏𝑏 ∈𝐵𝐵𝑡𝑡 ∈ 𝑇𝑇 + 

∑ ∑ 𝑄𝑄𝑏𝑏
𝑚𝑚𝑎𝑎𝑚𝑚

100
 × ∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏

𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘ℎ
𝑏𝑏 ∈𝐵𝐵𝑡𝑡 ∈𝑇𝑇

� (3) 

𝑅𝑅𝑂𝑂𝑂𝑂𝑑𝑑 = �∑ ∑ �𝜂𝜂𝑑𝑑 ×  𝑃𝑃𝑡𝑡,𝑏𝑏
𝑑𝑑 � × ∆𝑐𝑐 ×  𝑏𝑏 ∈𝐵𝐵𝑡𝑡 ∈ 𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡� (4) 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �∑ ∑ �
 𝑃𝑃𝑡𝑡,𝑏𝑏
𝑐𝑐

𝜂𝜂𝑐𝑐
 �× ∆𝑐𝑐𝑏𝑏 ∈𝐵𝐵𝑡𝑡 ∈ 𝑇𝑇 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡�   (5) 

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ 𝑘𝑘. exp � ℓ
𝑅𝑅× 𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇

�𝑏𝑏 ∈𝐵𝐵 × (μ𝑛𝑛𝑛𝑛𝑇𝑇 ×

DoD𝑇𝑇𝑚𝑚𝑚𝑚 ×  2)0.552 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏
𝑑𝑑𝑑𝑑𝑑𝑑   (6) 

Constraints for objective F are described in 
equation (7) to equation (21). Equation (7) is to find the 
change value of SoC when an empty battery is swapped 
by the rider with a battery from BSS at the initial time 
slot (t = 1). Meanwhile, equation (8) is the change in 
SoC value due to battery swap at t+1. Equation (12) to 
equation (14) state the swap and charging status of each 
battery at t. Both variables are binary variables where 
the value 1 is being charged or can be swapped, and the 
value 0 is the opposite. The swap status will equal 0 if 
there is no battery swap request by the driver at 
𝑇𝑇𝑗𝑗𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙

′and 𝑇𝑇𝑗𝑗𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙
′  ∪  𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙 = 𝑇𝑇). Equation (12) 

to equation (16) define and quantify the SoC of each 
battery at time slot t, and identify which batteries meet 

the criteria to be swapped with the rider’s battery. Only 
batteries with an SoC exceeding the 90 % threshold are 
permitted for swapping. 

𝑆𝑆𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 ∶ 

∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏
𝑠𝑠 = �𝑆𝑆𝑐𝑐𝐶𝐶0,𝑏𝑏 − 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡𝑑𝑑𝑇𝑇 �  ×  𝑐𝑐𝑡𝑡,𝑏𝑏 ,∀(𝑐𝑐 − 1) ∈

𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵   (7) 

∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏
𝑠𝑠 = (𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡−1,𝑏𝑏 − 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡𝑑𝑑𝑇𝑇 )  × 𝑐𝑐𝑡𝑡,𝑏𝑏 ,∀(𝑐𝑐 ≠ 1) ∈

𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵   (8) 

𝑐𝑐𝑡𝑡,𝑏𝑏 + 𝑐𝑐𝑡𝑡,𝑏𝑏 ≤  1 ,∀𝑐𝑐 ∈ 𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵    (9) 

∑ 𝑐𝑐𝑡𝑡,𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵 =  𝑁𝑁𝑡𝑡𝑛𝑛𝑛𝑛𝑎𝑎𝑡𝑡𝑠𝑠 ,∀𝑐𝑐 ∈ 𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙   (10) 

𝑐𝑐𝑡𝑡,𝑏𝑏 =  0 ,∀𝑐𝑐 ∈ 𝑇𝑇𝑗𝑗𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙′ ,∀𝑂𝑂 ∈ 𝐵𝐵   (11) 

𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏 = 𝑆𝑆𝑐𝑐𝐶𝐶0,𝑏𝑏 +
(𝑃𝑃𝑡𝑡,𝑏𝑏

𝑐𝑐 −𝑃𝑃𝑡𝑡,𝑏𝑏
𝑑𝑑 )×∆𝑡𝑡

𝑄𝑄𝑏𝑏
𝑚𝑚𝑎𝑎𝑚𝑚 × 100%− ∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏

𝑠𝑠  ,  

∀𝑂𝑂 ∈ 𝐵𝐵  (12) 

𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏 = 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡−1,𝑏𝑏 +
(𝑃𝑃𝑡𝑡,𝑏𝑏

𝑐𝑐 − 𝑃𝑃𝑡𝑡,𝑏𝑏
𝑑𝑑 )×∆𝑡𝑡 

𝑄𝑄𝑏𝑏
𝑚𝑚𝑎𝑎𝑚𝑚 × 100%− ∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏

𝑠𝑠 , 

∀𝑂𝑂 ∈ 𝐵𝐵  (13) 

𝑆𝑆𝑐𝑐𝐶𝐶0,𝑏𝑏 ≥ 𝜁𝜁 ×  𝑐𝑐𝑡𝑡,𝑏𝑏 ,∀𝑂𝑂 ∈ 𝐵𝐵   (14) 

The amount of charging/discharging power is 
written in equation (17) to equation (19). Equation (17) 
represents the battery charging characteristics, where at 
SoC above 70 % the charging current will decrease, 
which affects the charging power. The charging power 
decreases exponentially due to the constant decrease in 
current and voltage at SoC above 70 %. Equation. (18) 
to equation (19) allows the charging and discharging 
power values not to exceed the maximum 
charging/discharging power of each battery type. The 
total of electric motorcycles served, and batteries 
swapped is represented in equation (20) and 
equation (21), respectively. Equation (22) allows the 
charger to be used at the same time. However, the total 
number of chargers must not exceed the number of 
chargers of each type. 

𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡−1,𝑏𝑏 ≥ 𝜁𝜁 ×  𝑐𝑐𝑡𝑡,𝑏𝑏 ,∀𝑂𝑂 ∈ 𝐵𝐵    (15) 

(𝑆𝑆𝑐𝑐𝐶𝐶𝑏𝑏𝑇𝑇𝑚𝑚𝑚𝑚 − 𝐷𝐷𝑐𝑐𝐷𝐷𝑇𝑇𝑚𝑚𝑚𝑚) ≤ 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏  ≤ 𝑆𝑆𝑐𝑐𝐶𝐶𝑏𝑏𝑇𝑇𝑚𝑚𝑚𝑚  ,∀𝑐𝑐 ∈
𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵   (16) 

0 ≤   𝑃𝑃𝑡𝑡,𝑏𝑏
𝑐𝑐 ≤   (𝑃𝑃𝑐𝑐𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ  ×  exp (𝜔𝜔−𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡,𝑏𝑏

 𝑃𝑃𝑐𝑐𝑎𝑎𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐  )  × 𝑐𝑐𝑡𝑡,𝑏𝑏   (17) 

∀𝑐𝑐 ∈ 𝑇𝑇 ,∀𝑂𝑂 ∈ 𝑈𝑈𝑎𝑎  ,∀𝑐𝑐𝑐𝑐 ∈ 𝑐𝑐𝑗𝑗  ,∀(𝑂𝑂 = 𝑂𝑂) ∈ 𝑈𝑈  

0 ≤   𝑃𝑃𝑡𝑡,𝑏𝑏
𝑐𝑐 ≤  𝑃𝑃𝑐𝑐𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐ℎ × 𝑐𝑐𝑡𝑡,𝑏𝑏   (18) 

∀𝑐𝑐 ∈ 𝑇𝑇 ,∀𝑂𝑂 ∈ 𝑈𝑈𝑎𝑎  ,∀𝑐𝑐𝑐𝑐 ∈ 𝑐𝑐𝑗𝑗  ,∀(𝑂𝑂 = 𝑂𝑂) ∈ 𝑈𝑈  

0 ≤   𝑃𝑃𝑡𝑡,𝑏𝑏
𝑑𝑑 ≤  𝑃𝑃𝑐𝑐𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 ×  𝑐𝑐𝑡𝑡,𝑏𝑏   (19) 

∀𝑐𝑐 ∈ 𝑇𝑇 ,∀𝑂𝑂 ∈ 𝑈𝑈𝑎𝑎  ,∀𝑐𝑐𝑐𝑐 ∈ 𝑐𝑐𝑗𝑗  ,∀(𝑂𝑂 = 𝑂𝑂) ∈ 𝑈𝑈    

𝑁𝑁𝑠𝑠𝑑𝑑𝑟𝑟𝑎𝑎𝑑𝑑𝑑𝑑 = ∑ ∑ 𝑠𝑠𝑡𝑡,𝑏𝑏𝑏𝑏 ∈𝐵𝐵
𝑁𝑁𝑡𝑡
𝑢𝑢𝑢𝑢𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡 ∈ 𝑇𝑇 ,∀𝑁𝑁𝑡𝑡𝑛𝑛𝑛𝑛𝑎𝑎𝑡𝑡𝑠𝑠 ≠ 0   (20) 

𝑁𝑁𝑠𝑠𝑠𝑠𝑚𝑚𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑 = ∑ 𝑐𝑐𝑡𝑡,𝑏𝑏𝑡𝑡 ∈ 𝑇𝑇    (21) 
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∑ 𝑐𝑐𝑡𝑡,𝑏𝑏  ≤  𝐺𝐺𝑗𝑗𝑐𝑐  ∀ 𝑐𝑐 ∈ 𝑇𝑇 ∀(𝑂𝑂 = 𝑂𝑂) ∈ 𝑈𝑈 𝑏𝑏 ∈ 𝑈𝑈𝑢𝑢     (22) 

The big difference between the SoC of the battery at 
BSS and the battery owned by the rider is represented 
in equation (8), where the multiplication between the 
variables 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1,𝑏𝑏  ×  𝜔𝜔𝑡𝑡,𝑏𝑏 is the non-linear component, 
which is then linearized in equation (23) to 
equation (26). It is known that 𝑥𝑥𝑡𝑡,𝑏𝑏 is a positive variable. 
If the battery swap status is 1, then 𝑥𝑥𝑡𝑡,𝑏𝑏  will be equal to 
𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡−1,𝑏𝑏 and will be equal to 0 otherwise. Equation (17) 
also needs to be linearized because the battery charging 
power will decrease exponentially, which makes this 
equation non-linear. The linearization is expressed in 
equation (27), where the charging power (𝑃𝑃𝑡𝑡,𝑏𝑏𝑐𝑐 ) is 
generated by performing linear regression fitting. The 
parameter α represents the slope, and β denotes the 
intercept of the linear regression model. 

∆𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏
𝑠𝑠 = (𝑥𝑥𝑡𝑡,𝑏𝑏 − 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡𝑑𝑑𝑇𝑇 )  × 𝑐𝑐𝑡𝑡,𝑏𝑏 ,∀(𝑐𝑐 ≠ 1) ∈

𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵  (23) 

𝑥𝑥𝑡𝑡,𝑏𝑏  ≤  𝑐𝑐𝑡𝑡,𝑏𝑏  ×  𝑆𝑆𝑐𝑐𝐶𝐶𝑏𝑏𝑇𝑇𝑚𝑚𝑚𝑚  ,∀𝑐𝑐 ∈ 𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙,∀𝑂𝑂 ∈ 𝐵𝐵   (24) 

𝑥𝑥𝑡𝑡,𝑏𝑏  ≥  𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡−1,𝑏𝑏 − (1−  𝑐𝑐𝑡𝑡,𝑏𝑏) ,∀𝑐𝑐 ∈ 𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙,∀𝑂𝑂 ∈ 𝐵𝐵 
 (25) 

𝑥𝑥𝑡𝑡,𝑏𝑏  ≤  𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡−1,𝑏𝑏 ,∀𝑐𝑐 ∈ 𝑇𝑇𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙,∀𝑂𝑂 ∈ 𝐵𝐵   (26) 

𝑃𝑃𝑡𝑡,𝑏𝑏
𝑐𝑐 ≤  −𝛼𝛼 𝑆𝑆𝑐𝑐𝐶𝐶𝑡𝑡,𝑏𝑏 +  𝛽𝛽 ,∀𝑐𝑐 ∈ 𝑇𝑇 ,∀𝑂𝑂 ∈ 𝐵𝐵   (27) 

F. Computer program: Case studies 

All the simulations from each case are implemented 
in Python and solved by the Gurobi optimization 10.0.2. 
Table 2 shows the values of parameters used for 
simulation. This section provides a collection of case 
studies illustrating the efficacy of the introduced 
scheduling system. This work essentially examines 
three cases: the BSS unscheduled operation, battery 
swapping scheduling utilizing RHO-LSTM, and battery 
swapping scheduling utilizing RHO-Polynomial 
regression. The simulation is implemented on BSS 
across all instances, accommodating two types of 
batteries with capacities of 60 V, 6 Ah and 72 V, 20 Ah. 
The parameter values applied in the three scenarios are 
presented in Table 2. The second battery type is 
preferred by customers due to its higher demand [6].  

The BSS unscheduled operation entails the 
exchange of batteries without a scheduling mechanism. 
In this procedure, the battery's SoC constraint mirrors 
the scheduling method with RHO, allowing for battery 
swap if the SoC reaches or exceeds its threshold. The 
SoC threshold is 90 %, with the maximum SoC 
attaining 100 %. The BSS is capable of managing 
numerous battery swapping requests simultaneously. If 
a battery swap request is not received at time t, the BSS 
will refrain from executing the battery change service. 

Upon receiving a depleted battery, the BSS immediately 
initiates fast-charging at constant power until the end 
of the time interval t, without discharging to the grid. 
The swap procedure is emulated without scheduling, 
distributed over 24 hours consisting of 480 time 
intervals, each with a duration of 3 minutes. It is not 
assumed that each battery within the BSS is fully 
charged at the beginning of each day.  

RHO is an optimization technique that enhances 
the objective of a model within a certain time frame. 
This optimization is performed iteratively to determine 
the optimal short-term decisions while accounting for 
their long-term implications. This approach is 
employed under varying temporal conditions. The 
RHO in this system establishes three horizons: the 
current horizon, the forecasting horizon (u), and the 
scheduling horizon (T). The comprehensive schematic 
of the RHO utilized in this simulation is depicted in 
Figure 3. LSTM and polynomial regression are 
employed to execute the forecasting horizon. The 
outcomes of each hybrid approach are evaluated to 
assess the effectiveness of the RHO-LSTM method. 
Furthermore, the simulation is conducted to represent 
a full day of BSS operation across 480 time slots. The 

Table 2.  
Values of the parameters used. 

Parameters Value 

𝑄𝑄𝑏𝑏𝑇𝑇𝑚𝑚𝑚𝑚 1,44 kWh ∀𝑂𝑂 ∈ 𝜓𝜓1 
0,36 kWh ∀𝑂𝑂 ∈ 𝜓𝜓2 

∆𝑐𝑐 1/6 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡
𝑟𝑟𝑟𝑟  1036 IDR 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑠𝑠 2000 IDR ∀𝑂𝑂 ∈ 𝜓𝜓1 
4000 IDR ∀𝑂𝑂 ∈ 𝜓𝜓1 

𝜂𝜂𝑑𝑑 0.95 

𝜂𝜂𝑐𝑐ℎ 0.95 

𝑆𝑆𝑐𝑐𝐶𝐶𝑏𝑏𝑇𝑇𝑚𝑚𝑚𝑚 100 % 

𝐷𝐷𝑐𝑐𝐷𝐷𝑇𝑇𝑚𝑚𝑚𝑚 80 % 
𝑅𝑅 8,31 

𝑇𝑇𝑂𝑂𝑇𝑇𝑇𝑇 -273,15 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘𝑘𝑘ℎ 1036 IDR 

 𝑃𝑃𝑐𝑐𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑 0,72 kW ∀𝑂𝑂 ∈ 𝜓𝜓1  
0,36 kW ∀𝑂𝑂 ∈ 𝜓𝜓1  

𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀−𝑃𝑃𝑇𝑇 144 kW 

 𝑃𝑃𝑐𝑐𝑑𝑑𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐 0,57 kW ∀𝑂𝑂 ∈ 𝜓𝜓1  
0,12 kW ∀𝑂𝑂 ∈ 𝜓𝜓2 

ℓ -31500 

𝑘𝑘 30330 

𝐶𝐶𝑟𝑟𝑚𝑚𝑡𝑡𝑑𝑑 0,5 

b ∈ 𝜓𝜓1 
b ∈ 𝜓𝜓2 

b = [1-4] 
b = [5-10] 

𝜁𝜁 90 % 

𝑆𝑆𝑐𝑐𝐶𝐶0,𝑏𝑏 100 % 

𝜔𝜔 70 % 
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goal is to optimize the profit as specified in equation (2). 
Each iteration generates income from swapping, 
discharging, and the expense of charging the battery. 
The final iteration incorporates the cost of degradation. 
The simulation outcomes are analyzed across various 
machine learning techniques. 

III. Results and Discussions 
Simulations are conducted using an electric 

motorcycle arrival history dataset derived from the 
battery-swapping activities of an online transportation 
rider in Bandung, Indonesia. Qualitative data were 
collected to determine the frequency of battery swaps 
among electric motorcycle users, as well as the 
proportion of battery capacity typically consumed 
during each swapping event. The dataset contains the 
arrival time of electric motors along with the number of 
batteries requested per 3 minutes. Battery swapping 
demand and arrival times are generated randomly, 
informed by values from previous time intervals and 
qualitative data. Data generation is limited to working 
days to minimize uncertainty associated with 
transportation activity during weekends. 

A. Forecasting simulation 

The data used is time-variant, which has an 
increasing trend at the end of the time slot. As a result, 
the data is not stationary. To solve forecasting problems 
using time series data, one must use a stationary 
dataset. Therefore, data shifting is necessary to 
eliminate the non-stationary nature. 

The dataset is divided into training and testing sets, 
with the training data emphasizing the arrival patterns 
of electric motorcycles and the corresponding battery 
quantities. The test data lags behind the arrival of 
electric motors and numerous batteries. In polynomial 
regression, the training data includes information on 
the arrival of electric motorcycles and the number of 
batteries requested from Monday to Thursday. Test 
data is motorcycle-arriving data on Friday that has been 
shifted by one time slot. The model is constructed to 
accommodate multiple inputs, specifically through the 
application of multivariate polynomial regression. 

The LSTM method modifies the data to have only 
one input. The electric motorcycle arrival history data 
from Monday to Friday is consolidated into a single 
column. In this method, data shifting is also carried out 
to avoid non-stationary data properties. Data on the 
arrival history of electric motors at t represents x, while 
data on the arrival history of electric motors at t+1 
represents y. Training data and test data are divided by 
a ratio of 80:20, where previously data normalization 
has been carried out first. The training data are 

subsequently divided into two subsets: validation data 
and training data. 

Figure 5 and Figure 6 display the prediction results 
using polynomial and LSTM methods, respectively. 
Prediction results using the LSTM method are more 
accurate than those using polynomial regression. The 
large root mean square error (RMSE) of each method 
demonstrates this. Predicting the arrival of electric 
motors with LSTM produces an RMSE of 0.002, while 
using polynomial regression is 0.484. 

Although these two methods can process non-linear 
data, it can be seen that the RMSE generated by them is 
very different. This is likely due to the poor correlation 
value between the day variables and arrival time. The 
correlation result can be seen in Table 3. The LSTM 

 

Figure 5. Prediction results using polynomial regression. 

 

Figure 6. Prediction results using LSTM after denormalization. 

Table 3. 
Correlation values days vs time. 

Days Time 

Monday 0.12604 

Tuesday 0.133365 

Wednesday 0.215388 

Thursday 0.22695 

Friday 0.266208 
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method, with its cells and layers, may also contribute to 
the more intricate computational process of data 
training. The inclusion of forget cells in the LSTM 
method facilitates a more advanced data training 
process. LSTM is able to identify long-term patterns 
and long-range dependencies in the data. 

B. RHO and polynomial regression simulations 

The preceding subsection examined the forecasting 
horizon process employing LSTM and polynomial 
regression techniques. The predicted outcome is 
utilized as the input for time step t+1. This subsection 
presents an analysis of the simulated results obtained 
through the RHO and polynomial regression 
prediction techniques. In the RHO approach, the 
initialization of the optimization process is recognized 
as a critical step. Accordingly, the initial value is first 
determined. This value, along with the decision 
variable, is subsequently employed as the primary input 
for the optimization process at time t+1. In the last 
iteration, the aggregate degradation cost of all batteries 
diminishes the total value of the objective functions. 

Figure 7 and Figure 8 illustrate the battery demand 
and the frequency of battery swaps per hour, 
respectively. Polynomial regression predicts the 
emergence of electric motorcycles, considering the SoC 
of the battery. The efficacy of RHO-polynomial 
regression scheduling is inadequate for enabling 

battery changes. During peak hours, BSS can supply 
50 % of battery type 2 while surpassing the demand for 
battery type 1 by 14.28 %. This approach generally fails 
to satisfy the demand for type 2 batteries. There is a 
significant demand for type 2 batteries. 

The results of the polynomial regression forecasts 
influence the battery-swapping outcome. This also aids 
in establishing charging-discharging protocols using 
real-time pricing mechanisms. 

C. RHO and LSTM simulations 

This subsection discusses how LSTM handles the 
simulation forecasting horizon in RHO. The RHO-
LSTM method performs better than RHO-Polynomial. 
Figure 8 and Figure 9 present the total battery swaps for 
each method. During peak hours, this method 
performs well, providing up to 75 % of the battery type 
2 and more than 50 % of battery type 1. Generally, the 
RHO-LSTM method provides a total battery of each 
type that closely matches the battery swap demand. 

This occurs because the process of predicting data 
on the arrival of the desired electric motorcycle and 
battery outperforms polynomial regression. Real-time 
pricing also contributes to the scheduling of power 
charging-discharging schemes. Figure 10 shows a graph 
of the relationship between real-time pricing and the 
charging-discharging scheme. Figure 11 presents a 
graph depicting the correlation between real-time 

 

Figure 7. The battery demand at the end of workdays. 

 

Figure 8. The battery swapped by RHO-polynomial regression method. 
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pricing and the charging-discharging strategy. At grid 
peak prices, the total power at the BSS decreases.  

D. Unscheduled operation simulation 

An unscheduled BSS operation is a battery swap 
that happens without the use of a scheduling system. 
This procedure aligns the battery's SoC limitation with 
the RHO scheduling process, allowing for battery swap 
if the SoC exceeds the threshold. The threshold SoC is 
90 %, while the maximum SoC is 100 %. The BSS may 

have the capability to accommodate many battery-
changing requests concurrently. The BSS will not 
perform the battery swap service if there is no request 
at the specified time. This operation does not execute a 
discharge scheme. A fast-charging system, which 
utilizes constant charging power, immediately charges 
the battery upon replacement and does not utilize a 
real-time pricing mechanism. The BSS will operate with 
normal pricing, which uses a set grid price. 

 
Figure 9. The battery swapped by RHO-LSTM method 
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Figure 10. The BSS power curves vs real time price with RHO-LSTM. 

 

 
Figure 11. The BSS power curves vs real time price with RHO-polynomial regression. 
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This unscheduled operation approach, which lacks 
integration with real-time system variables, results in a 
charging rate that remains constant across all time 
intervals t, regardless of fluctuations in grid electricity 
pricing, as illustrated in Figure 12. This static charging 
scheme significantly contributes to the observed 
performance disparities among the other methods. The 
profit outcome associated with the unscheduled 
operation, presented in Figure 13, further reflects the 
impact of these operational limitations. The addition of 
a real-time pricing mechanism affects BSS profits 
compared to using normal grid prices. The profit from 
BSS utilizing the RHO-LSTM technique surpasses that 
of the RHO-polynomial approach, as the electricity 
price incurred by BSS at grid peak pricing is lower than 
the price derived from the RHO-polynomial method 
and the established grid price, as illustrated in Figure 12. 
Figure 13 illustrates the BSS earnings achieved in each 
scenario. 

IV. Conclusion 
Battery swapping stations (BSS) are generally 

configured to support a single battery type 
corresponding to a specific electric motorcycle model. 
In this study, the BSS capable of accommodating 
multiple battery types is classified under the concept of 
battery heterogeneity. To ensure operational efficiency, 
a swapping schedule is optimized through the 
application of a rolling horizon optimization (RHO) 
framework, while long short-term memory (LSTM) 
networks are employed to forecast both battery 
demand and vehicle arrival patterns. Charging and 
discharging costs are determined based on real-time 
electricity pricing. The designed scheduling model is 
empirically evaluated and benchmarked against 
alternative methods, including polynomial regression 
and unscheduled operations. The proposed system 
enables the BSS to accommodate two types of batteries 

 
Figure 12. The BSS power curves vs grid price with RHO-LSTM and RHO-polynomial regression. 

 

 
Figure 13. The BSS profit. 

-5
-4
-3
-2
-1
0
1
2
3
4

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Po
w

er
 (k

W
)

G
rid

 P
ric

e (
ID

R)

Time (hour)

Grid Price Power (RHO-LSTM) Power (RHO-Polynomial)

1.
82

6.
09

5

1.
39

1.
96

3

0

1.
82

1.
54

0

1.
29

8.
86

2

1.
82

1.
25

0

R H O - L S T M R H O - P o l y n o m i a l  
R e g r e s s i o n

U n s c h e d u l e d  
O p e r a t i o n

Pr
of

it 
(I

D
R)

Real-Time Pricing Normal Pricing



N.E. Fauziah et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 16 (2025) 144-157 

 

156 

while demonstrating superior efficiency in battery 
allocation compared to other cases, thereby enhancing 
the overall performance of BSS operations. Among the 
evaluated methods, the RHO-LSTM approach yields 
the highest profit, primarily due to the integration of 
real-time electricity pricing and an optimized charge-
discharge power management scheme. The 
implementation of the real-time pricing mechanism 
significantly improves BSS profitability when 
compared to the use of static grid pricing. Specifically, 
the profit achieved by the RHO-LSTM method exceeds 
that of the RHO-polynomial method and the 
unscheduled operation. This improvement is attributed 
to the lower energy procurement costs during peak grid 
pricing periods, which are more effectively managed 
under the RHO-LSTM framework. Quantitatively, the 
RHO-LSTM approach results in a 23.77 % higher profit 
than the RHO-polynomial method and a 0.26 % 
increase compared to the unscheduled operation. 
Furthermore, the number of batteries supplied under 
the RHO-LSTM method is 40 % greater than that of the 
RHO-polynomial method, indicating a substantial 
improvement in battery availability and system 
responsiveness. 
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