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Abstract

This paper presents the development of an edge device for cost-effective implementation in agricultural environments.

Experimental evaluations demonstrate accuracy and real-time performance, showcasing its potential for adoption in the

industry. The proposed system provides a reliable tool for timely and accurate monitoring of fresh fruit bunch (FFB) ripeness,

facilitating optimized crop management practices. The system employs the YOLOv8n model, renowned for its efficiency in real-

time object detection tasks, and is adapted to run on the resource-constrained Raspberry Pi 4. To ensure seamless operation on

edge devices, model optimization techniques such as quantization and hardware acceleration are implemented, enabling rapid

decision-making based on live data feeds. A dataset comprising 4,194 annotated FFB images was utilized, with a [3,681:348:165]

training-validation-test split. Performance evaluation demonstrated an average precision of 0.898 and a mean average precision

(mAP) of 0.952. The system potentially enhances yield quality and sustainability while supporting data-driven decision-making

in precision agriculture.
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I. Introduction

Detecting palm fruit ripeness is crucial for
optimizing oil quality and yield. Traditional manual
methods are labour-intensive and prone to errors.
Integrating Internet of Things (IoT) and edge
computing with deep learning, such as the You Only
Look Once version 8 (YOLOv8n) object detection
model on a Raspberry Pi, offers a solutions that enables
real-time, accurate ripeness detection, overcoming
computational limitations, and enhancing efficiency
[1][2][3][4].

Deep learning utilizes neural networks with many
layers to model complex patterns in large data sets [5].
It has revolutionized fields such as image recognition,
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natural language processing, and autonomous driving
[6]. Deep learning models, particularly convolutional
neural networks (CNNs), are highly effective in image
processing tasks, including detecting fruit ripeness by
learning and recognizing intricate features from images
[7].

In palm fruit ripeness detection, deep learning
models are trained on datasets of palm fruit images at
various ripeness stages. These models identify visual
cues like colour, texture, and shape to predict fruit
ripeness [8][9]. CNNs, designed for processing grid-
like data, are particularly suitable for this task due to
their ability to learn hierarchical representations from
visual data [8].
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Previous studies demonstrate the efficacy of CNNs
in this domain. For instance, a study comparing
DenseNet and AlexNet models found DenseNet
outperformed AlexNet by 8.5 % in accuracy and 8 % in
F1 score when classifying palm fruit ripeness levels [8].

Another approach combined deep neural networks
(DNNs) and machine learning methods to determine
ripeness stages in fruits like strawberries and tomatoes,
achieving excellent classification performance [9]. The
study implemented a deep learning-based method to
classify oil palm fresh fruit bunches (FFB) into raw, ripe,
and rotten categories.

In [10], a machine learning (ML) model is proposed
utilizing a dataset of 400 images. The CNN model
achieved 92 % classification accuracy on test data,
although performance dropped to 76 % during model
testing, likely due to variations in background color and
shape. Another possible reason for the decline is
overfitting, where the model learned the training data
too well but failed to generalize to unseen test data. This
issue is primarily attributed to the small dataset size,
with only 400 images, which may have caused the
model to memorize patterns instead of learning
meaningful features.

The importance of ripeness classification in
preventing overripe oil palm FFBs is emphasized as
overripe fruits lead to higher free-fatty acid levels,
reducing the quality of extracted oil [11][12]. The work
in [11] focuses on the application of deep learning for
object detection and classification, particularly using
CNNs. The study proposes EfficientDet-Lite2, a
specialized CNN model for oil palm FFB ripeness
detection, which is optimized for real-time applications
in plantation environments. EfficientDet-Lite2 utilizes
a compound scaling approach, adopting the D2
configuration for its input resolution. This
configuration enhances the input resolution to
448x448 pixels, enabling the model to capture finer
details in images. In applications such as ripeness
detection of palm FFBs, the higher resolution improves
the differentiation of color gradients and texture
varjations, resulting in more accurate classification.
The model integrates a bi-directional feature pyramid
network (Bi-FPN) with five layers and three box classes
per layer. The proposed model achieved an accuracy of
84 % when tested in Indonesian plantations,
demonstrating its effectiveness in real-world scenarios.
The potential of leveraging EfficientDet-Lite2 for
accurate and efficient ripeness classification could
significantly enhance harvesting decisions and overall
palm oil quality. The Bi-FPN structure, while efficient,
may struggle with highly occluded or clustered FFBs,
where overlapping objects and varying lighting
conditions reduce precision detection. This could lead

to misclassifications in real-world plantation settings,
particularly in dense foliage or shadowed areas,
affecting its reliability in practical harvesting
applications.

YOLO deep learning model has gained popularity
for its speed and accuracy in object detection, treats
object detection as a single regression problem,
mapping pixels to bounding box coordinates and class
probabilities. This enables real-time processing,
essential for applications like palm fruit ripeness
detection in field conditions [13][14]. The evolution
and key feature of YOLO detection models are shown
in Table 1 [15][16][17][18][19][20][21].

Recent studies have demonstrated the effectiveness
of YOLO-based models in palm oil ripeness detection.
The work in [22] highlighted YOLOvV3's real-time
detection capabilities, while [23] emphasized its role in
improving classification accuracy. The study in [24]
showcased YOLO's robustness using video datasets and
[13] found that YOLOV3 is superior to ResNet50 in
both accuracy and speed. Further advancements
include the development of a YOLOv4-based system
with 87.9 % mAP in [14] and the exploration of
YOLOVS, achieving high precision and recall in
ripeness prediction. These findings underscore YOLO’s
reliability for real-time agricultural applications.

Implementation on Raspberry Pi is an alternative
approach to reduce costs and energy consumption in
embedded system for object detection classification
systems. The work in [25] demonstrate that YOLO-
based object detection can be successfully deployed on
resource-constrained embedded platforms, achieving
near real-time performance suitable for monitoring
and detection applications. This highlights the
feasibility of low-power, cost-effective, edge-based
vision systems as an alternative to GPU-dependent
solutions [25].

Further evidence supporting efficient deep learning
deployment on resource-constrained devices is
provided in [26]. The study shows that transfer learning
enables high-accuracy deep learning applications on
Raspberry Pi despite limited computational resources.
By comparing InceptionV3 and the lightweight
MobileNetV2 architecture, the results indicate that
MobileNetV2 achieves superior accuracy and F1 score
while maintaining computational efficiency, making it
more suitable for real-time edge applications. These
findings emphasize the importance of lightweight
architecture and model reuse strategies in achieving
reliable performance on low-power embedded
platforms.

YOLOBench systematically evaluates YOLO-based
detectors on embedded platforms and shows that
multiple YOLO variants achieve competitive accuracy—
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Table 1.
Evolution and general key features of YOLO object detection models.

Version  Year Key features Performance Architecture & techniques
YOLOvl 2015 - - Original YOLO model - Real-time detection - Single convolutional network predicting
2016 - Lower accuracy bounding boxes and class probs

YOLOv2 2017 - Batch normalization

- Anchor boxes recall

- Multi-scale training

YOLOv3 2018 - Deeper network (Darknet-53)

- Feature pyramid network (FPN)

- Improved accuracy and

- Better for small object
detection

- Predefined anchor boxes
- Training on different image sizes

- 53-layer network
- Multi-scale predictions

YOLOv4 2020 - CSPDarknet53 - Enhanced accuracy and - Advanced modules and data augmentation
- Mish activation speed techniques
- Spatial pyramid pooing (SPP) - Bag of freebies and
- PANet specials

YOLOv5 2020 - Model variants (s, m, 1, x)

- Integration with modern tools

YOLOv6 2021 - Improved efficiency

- Easier to use and

- Further performance

- Variants balancing speed and accuracy

accessible

- Continued network and training strategy

improvements advancements
YOLOv7 2022 - Enhanced efficient layer - Best balance of speed and - New architectural changes
aggregation networks (E-ELAN) accuracy

YOLOv8 2023 - Latest advancements

- Further optimizations speed

- Highest accuracy and

- Continued improvements in architecture
and training techniques

latency trade-offs on ARM CPUs, including Raspberry
Pi. These findings support the use of lightweight YOLO
models as practical alternatives to computationally
intensive  state-of-the-art  detectors for edge
deployment [27]. In [28] Deep Q-Learning was
combined with YOLOV3 for real-time object detection
and recognition on a Raspberry Pi, with accuracy
through data

implementation demonstrated adaptability to resource

enhanced augmentation.  This
constraints, offering cost-effective, energy-efficient
solutions for autonomous vehicles.

Deploying YOLO-based deep learning models in
embedded systems for IoT applications, including palm
fruit ripeness detection, presents several challenges,
particularly  related to hardware limitations,
computational constraints, power consumption, and
real-time processing requirements. The YOLOv8
model, with its millions of parameters, requires GPU
acceleration, which most IoT devices lack. As a
complex CNN-based model, it is computationally
intensive and difficult to run on resource-constrained
hardware. To address this challenge, a more efficient
alternative is to use lightweight versions like YOLOv8n,
which are optimized for edge deployment while
maintaining reasonable accuracy. Another alternative
is to implement edge devices, where the model runs
locally on the device instead of relying on cloud servers,
and to deploy hybrid cloud-edge models that transmit
only essential data (e.g., detection results) rather than
raw images, optimizing both performance and

bandwidth efficiency. The subsequent section will

explore an IoT-enabled palm fruit ripeness detection
system on edge devices using YOLOv8n on a Raspberry
Pi 4 Model B for real-time, precise detection,
overcoming challenges associated with deploying
advanced models on resource-constrained devices.
This work proposes an IoT-enabled palm fruit
ripeness detection system using YOLOv8n on a
Raspberry Pi 4 Model B. The system captures real-time
images of oil palm fruits and classifies their ripeness
stages, offering a scalable and cost-effective solution for
precision agriculture. The novelty of this study lies in
the adaptation and optimization of YOLOv8n for
deployment on edge devices in tropical agricultural
environments. The adaptation addresses real-world
challenges such as environmental variations, model
efficiency on low-power hardware, and real-time
processing constraints. The study contributes to the
tield by demonstrating the feasibility of deploying high-
accuracy deep learning models for palm fruit ripeness
detection on edge devices, offering a practical solution
for improving harvesting efficiency in the palm oil
industry. The subsequent sections will discuss existing
detection methods, detail the proposed system, and
evaluate its performance in real-world conditions.

I1. Materials and Methods

A. System architecture

The IoT-enabled palm fruit ripeness detection
system is designed to enhance the efficiency and
accuracy of palm oil fruit harvesting. This system
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leverages real-time visual inspection using advanced Al
techniques to determine the ripeness of palm fruits,
while also incorporating geolocation tracking for
precise data logging and environmental monitoring.
The system operates through two primary modes,
which are camera mode for real-time detection and
global positioning system (GPS) Mode for location
tracking and data synchronization. A visual
representation of the proposed system is shown in
Figure 1.

B. Edge device setup

The core of the proposed system is an edge
computing platform based on the Raspberry Pi 4 Model
B, powered by the Broadcom BCM2711 system-on-
chip (SoC). The BCM2711 integrates a quad-core ARM
Cortex-A72 (64-bit) CPU operating at 1.5 GHz, which
provides sufficient computational capability for
running lightweight deep learning models on edge
devices. The Raspberry Pi used in this study is equipped
with 4 GB RAM, balancing performance and energy
efficiency for real-time object detection tasks.

Image acquisition is performed using an 8-
megapixel Raspberry Pi Camera Module V2, connected
via the camera serial interface (CSI) interface to ensure
low-latency data transfer. The system is powered using
a 5V, 3 A regulated power supply, suitable for both
laboratory testing and portable field deployment using
a power bank or battery pack. The detection and
classification of the fruit's ripeness are carried out using
the YOLOv8n deep learning model, which runs in real-
time on the device. The hardware setup also includes a
fan for thermal management, with the RPi4 monitoring
its temperature and regulating the fan speed,
accordingly, forming a closed-loop system.

The system integrates several sensors to support its
functionality, namely camera module, GPS module,

GPS Module

YOLOS8

=) Rasp Pi4

Camera Module

E

BME 280

Handheld Device

loT
Gateway

and BME 280 sensor. The camera module is 8MP and
captures images of palm fruits for visual inspection and
ripeness detection. The YOLOv8n model processes
these images in real-time to classify the ripeness of the
fruits. The GPS module (Neo 6M) is used for
geolocation tracking, the GPS module logs the device's
coordinates whenever a button is pressed in GPS Mode.
This ensures that the location of each fruit detection
event is accurately recorded. This BME280 sensor is
used for environmental monitoring, providing data on
temperature, humidity, and atmospheric pressure.
These parameters are crucial for analyzing the
conditions under which the palm fruits are growing
and can impact the ripeness detection accuracy.

C. Communication protocols

Data transmission in the proposed system is
managed to cope with the challenges of intermittent
connectivity in plantation environments. The primary
communication protocols include long range wide area
network (LoRaWAN) communication, IoT gateway to
cloud, offline data logging, and data synchronization.

LoRaWAN is employed for transmitting data from
the handheld device, which includes the RPi4, camera,
BME280 sensor, and GPS module, to an IoT gateway.
LoRaWAN is chosen for its low power consumption
and long-range communication capabilities, making it
ideal for large plantation areas. The IoT gateway
receives data from the handheld device via LoORaWAN
and then connects to a cloud database. This setup
ensures that data collected in the field is reliably
transmitted to the cloud for further processing and
storage.

In scenarios where immediate transmission is not
possible, offline data logging mode is activated, where
data are logged locally on the device in JavaScript object
notation (JSON) format. This approach ensures that no

Cloud
Database

k\ko

Location Fruit ripeness

laval

Ambient temperature, pressure,
humidity

User Dashboard

Figure 1. Block diagram of the proposed IoT-enabled palm fruit ripeness detection system.
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data is lost due to connectivity issues. Once a stable
connection is available, Data synchronization mode is
activated, where the system uploads the logged data to
the cloud database. The data can then be accessed and
visualized using a dashboard.

D. Ripeness detection using YOLOv8n

The YOLOv8 implementation in the proposed
system leverages pre-trained YOLOv8n models that are
fine-tuned on a custom dataset of oil palm fruit images
categorized by ripeness stages. Roboflow was used to
annotate each image for palm oil fruit ripeness
classification. Quality training data is crucial for
accurate supervised deep learning models. Data
augmentation techniques were applied to enhance
model performance by creating variations in images
through flipping, rotating, adjusting exposure, and
brightness [29][30]. These methods aimed to expand
the dataset, improve model generalization, and prevent
overfitting. =~ This  approach  ensures reliable
classification of palm oil fruit ripeness, benefiting
agricultural management practices.

The process begins with data collection and
annotation, where a diverse set of images of oil palm
fruits at various ripeness stages is collected and labelled
(kurang masak - unripe, masak - ripe, terlalu masak -
overripe) to create an accurate training dataset. This
annotated dataset is then used to fine-tune the pre-
trained YOLOv8n model, employing techniques such

as data augmentation to enhance the model's

Dataset
Acquisition

Dataset
Preprocessing

YOLOv8n Model
Training

Model Optimization
and Fine-tuning

()

Data Split
(Train Set | Valid Set|
Test Set)

Table 2.
Dataset split and number of images.

Dataset Split Percentage Number of images
Training Set 88 % 3681
Validation Set 8% 348
Test Set 4% 165

robustness and improve its performance. An
illustration of the model training and testing workflow
is shown in Figure 2.

The dataset was split into training (88 %), validation
(8 %), and test sets (4 %), resulting in 3681, 348, and 165
images respectively, as shown in Table 2. Each image
underwent critical preprocessing steps to standardize
and enhance model robustness. Table 3 lists the
preprocessing steps which incluce auto-orientation,
3024x4032 resizing to 640x640 pixels, and
augmentation techniques such as horizontal flipping,
90° rotations (clockwise, counter-clockwise, and upside
down), random cropping (0% to 20 % zoom), and
grayscale conversion for 15 % of images. These steps
diversified the training data, improving the model's
ability to generalize across different inputs.

E. System operation and data acquisition

scenarios

When the handheld device is powered on, it
initializes the screen and GPS module, as well as
launches the device’s graphical user interface (GUI).

Data Input
Image from camera

Preprocessing
(Auto-Orient | Resizing
640 x 640)

Trained Model
YOLOv8n

Data Augmentation
(Flip | Rotate | Crop |
Grayscale)

Evaluation

()

Figure 2. Workflow of YOLOv8n on IoT-enabled palm fruit ripeness detection system: (a) model training; and (b) model testing.



310 N.H. Noordin et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 16 (2025) 305-317

Table 3.
Preprocessing steps description.

Step Description

Auto-orient Correct image orientation

Resize Resize to 640x640 pixels

Flip Horizontal flipping

Rotate 90° rotations (clockwise, counter-clockwise, upside down)
Crop Random cropping (0 % min zoom, 20 % max zoom)
Grayscale Apply to 15 % of images

The user interface presents mode selection and a
Dashboard. Pressing button 1 or 2 activates camera or
GPS mode, respectively. The health monitoring
features, which include battery and sensor status, of the
device operates within a closed-loop system, tracking
the handheld device temperature and adjusting the fan
speed accordingly. Data synchronization occurs when
the GPS mode is active.

During field deployment, data acquisition was
conducted under two distinct operational scenarios,
namely FFB detection on the tree and FFB detection on
the ground. In the scenario of FFB on the tree, the
handheld device is used to capture images of FFBs that
are still attached to the palm tree. The operator
positions the camera toward the palm canopy at an
appropriate distance to ensure sufficient visibility of the
FFB. This setup represents pre-harvest inspection,
enabling ripeness assessment directly on the tree to
support harvesting decisions.

In the FFB Detection on the ground scenario, the
handheld device is used to scan harvested FFBs placed
on the ground. The camera is oriented downward
toward the FFB, representing post-harvest verification
and grading, where reduced occlusion and closer
proximity allow detailed ripeness evaluation.

Upon activation, the camera mode initiates a live
feed with vision Al The system awaits the presence of
a palm oil fruit within the camera frame. Once detected,
the YOLOV8n palm oil fruit model processes the image,
performs detection, and visualizes a bounding box
around the fruit, indicating its ripeness classification.
The system then waits for button input to log the
ripeness classification. In the GPS mode, the device
attempts to obtain a position fix from satellites, parsing
raw data into latitude and longitude, and displaying this
information on the screen. The system then waits for
button input to log GPS data.

During both acquisition scenarios, environmental
parameters are simultaneously recorded using the
BME280 sensor, including ambient temperature,
relative humidity, and atmospheric pressure, to provide
contextual information for each detection event. The
handheld device saves location, environmental data

and classification results (results of ripeness level,
location, temperature and humidity) in JSON files,
which are later synchronised to an IoT gateway using
LoRaWAN. The IoT gateway then uploads the data to
a cloud database using the message queuing telemetry
transport (MQTT) protocol. The MQTT broker on the
cloud server receives and stores the data. The
dashboard retrieves the data from the cloud database to
display real-time updates on palm fruit ripeness and
Additionally, the handheld device
continuously checks for Wi-Fi connections to

location.

synchronize and send data to the cloud when available.

IT1. Results and Discussions

A. Visual analysis of palm fruit ripeness model
evaluation indicators

The efficacy of the developed model is evaluated
through several key metrics illustrated in Figure 3,
which depict its performance on both the training and
validation datasets. The graphs bounding box loss
(train/box_loss, val/box_loss) show the accuracy of the
model in predicting bounding boxes around palm oil
fruits [31]. Lower values in these metrics indicate better
alignment between predicted and ground truth
bounding boxes, as depicted by the downward trend in
the graphs. The metrics classification loss
(train/cls_loss, val/cls_loss) assesses how accurately the
model predicts the ripeness classification of palm oil
fruits. A decrease in these values across epochs signifies
improved classification performance, as visually
represented by the decreasing trend in the
corresponding graphs [32]. The metrics distribution
fitting loss (train/dfl_loss, val/dfl_loss) indicate the
model’s ability to refine object boundaries, crucial for
precise localization of diseased areas within palm oil
fruits. A decline in these metrics demonstrates
enhanced boundary detection, as reflected by the
decreasing trend in the graphs over training epochs.

The metric precision and recall
(metrics/precision(B), metrics/precision(M),
metrics/recall(B), metrics/recall(M)) evaluate the
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Figure 3. Model evaluation indicators.

model’s precision in correctly identifying ripe, under
ripe, and over ripe palm oil fruits (B for boxes and M
for mass). Precision measures the accuracy of positive
predictions, while recall assesses the model's ability to
capture all relevant instances of ripe fruits [33]. The
trends in precision and recall metrics over time, visible
in the graphs, indicate the model's effectiveness in
distinguishing between different ripeness levels of palm
oil fruits.

The model demonstrates an average precision (AP)
of 0.898, indicating its accuracy in predicting the
correct class labels for the detected objects. Average
precision is a crucial metric in object detection,
reflecting the precision of the model across various
thresholds. The model's average recall (AR) values are
0.945 for the “masak” (ripe), “kurang masak” (under
ripe), and “terlalu masak” (overripe) classes. This high
recall value signifies that the model effectively identifies
a significant proportion of true positives for each class,
ensuring that most of the correctly classifiable instances
are detected. The model achieves a mean average
precision (mAP) of 0.952. The mAP is a measure that
averages the precision across all classes and detection
thresholds, providing an overall performance
evaluation of the model. A high mAP value indicates
that the model performs consistently well across all
categories of palm fruit ripeness, making it a reliable
tool for real-world agricultural applications.

Human accuracy in visual ripeness detection for
palm fruits typically ranges between 85-90 % in
controlled conditions, varying with assessor experience
and environmental factors. Compared to this
benchmark, the YOLOv8n model’s mAP of 0.952
demonstrates superior accuracy and reliability,

especially in challenging conditions like poor lighting
or high humidity [21]. Traditional methods, such as
color thresholding, often falter under such conditions,
whereas deep learning models, including CNNs, have
achieved exceptional accuracy in similar tasks,
reporting up to 99.89 % accuracy, with F-measure,
precision, and recall values of 99.88 %, 99.90 %, and
99.85 %, respectively [34]. This highlights YOLOv8n’s
potential to enhance or replace manual assessments in
ripeness detection, enabling precise and timely
interventions in agricultural management.

B. Evaluation of the optimum model

The evaluation of the optimum model involved an
onsite test of the IoT-enabled palm fruit ripeness
detection system. The test was conducted with two
groups, each scanning FFB both on the ground and on
the trees. The system successfully detected and
classified the fruits according to the trained clusters
mentioned earlier. As shown in Figure 4, the detection
and prediction results illustrate the system's capability
to identify and classify palm fruits both as loose fruit on
the ground and as fruit on palm trees. The figure
highlights the successful application of the model in
real-world conditions.

The detection and prediction results inferred the
system's capability to identify and classify palm fruits
both as loose fruit on the ground and as fruit on palm
trees. For FFB on the ground, the system demonstrated
high accuracy in detecting and classifying the fruits.
The detection and classification process were
straightforward, with the camera easily capturing clear
images of the FFB. The model's performance in this
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At r
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Figure 4. Detection and predictions on site: (a) loose fruit; and (b) fruit on palm tree.

scenario confirmed its reliability in identifying the
ripeness levels of palm fruits at ground level.

Scanning FFB on trees presented additional
challenges, particularly for tall trees. While the system
was able to detect and classify fruits on trees up to an
eye-level height of approximately six feet, the accuracy
decreased for taller trees. This reduction in accuracy
can be attributed to the difficulty in capturing clear
images of the fruits, which are often obscured by foliage
or situated at angles that are not ideal for the camera.

Despite these challenges, the model performed
satisfactorily at eye-level height, accurately identifying
and classifying the ripeness of the fruits. This indicates
that while the system is effective for ground-level and
lower tree-level scanning, improvements in image
capture techniques or additional training data may be
required to enhance performance for taller trees.

In conclusion, the onsite evaluation demonstrated
that the IoT-enabled system is effective for detecting
and classifying palm fruit ripeness at ground level and
up to a certain tree height. Future work could focus on
addressing the challenges associated with taller trees to
further optimize the model's performance.

C. Performance comparison with previous
studies

To evaluate the performance of the proposed
system, a comparative analysis was conducted against
previous studies utilizing various deep learning models
for palm fruit ripeness detection, as shown in Table 4.
The comparison includes key metrics such as precision
and recall, which are critical for assessing the reliability
and accuracy of the detection models. The proposed
YOLOvV8n model achieved a precision of 0.952 and a
recall of 0.945, demonstrating a balanced performance
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Table 4.

Performance comparison of palm fruit ripeness detection models using different algorithms.
Work Algorithm Precision Recall Method type
Herman et al. [8] DesNet 0.87 0.86 PC-based simulation
Purba et al. [35] YOLOv8 0.98 0.83 PC-based simulation
Harmiansyah et al. [36] YOLOv5 0.87 0.95 PC-based simulation
A.F. Japar et al. [33] YOLOv4 0.97 0.81 PC-based simulation
Mamat et al. [37] YOLOv5 0.98 0.98 PC-based simulation
Proposed method YOLOvV8n 0.952 0.945 Edge Al implementation

in accurately detecting ripe palm fruit bunches.
Compared to earlier works, the results indicate
competitive accuracy and recall values.

In comparison to YOLO-based models, the study in
[35] utilized YOLOv8 and reported the highest
precision of 0.98, though its recall value was lower at
0.83, suggesting that while it achieves high confidence
in positive detections, it may miss some instances of
ripe fruit. Similarly, the work in [33] using YOLOVA4,
reported 0.97 precision and 0.81 recall, indicating
strong performance but with slightly lower recall than
the proposed model. The approach in [37] employing
YOLOV5, achieved the highest recall (0.98) while
maintaining a precision of 0.98, surpassing most other
models. However, the trade-off between model
edge-device
constraints must be considered. In contrast, [8]

complexity  and implementation
implemented a DenseNet-based approach, which
yielded 0.87 precision and 0.86 recall, showing lower
accuracy compared to YOLO-based methods, likely
due to the model's complexity and its suitability for
real-time applications. Compared to existing works, the
proposed YOLOv8n-based model balances both high
precision (0.952) and high recall (0.945) while
maintaining real-time performance on an edge device
(Raspberry Pi 4). The results indicate improved
detection capabilities over previous YOLOv4 and
YOLOV5
comparable performance to YOLOv8 variants. The

implementations, while achieving
slightly lower precision than [35] and [37] is
counterbalanced by a more balanced recall, ensuring
fewer missed detections in real-world applications.

The findings demonstrate the feasibility of
implementing an edge computing solution for real-
time palm fruit ripeness detection, optimizing model
performance while maintaining deployment efficiency.
The results indicate that the YOLOv8n model is well-
suited for IoT-enabled agricultural applications, where
real-time inference, low computational overhead, and
high detection accuracy are required.

D. Dashboard for monitoring and analysis

The dashboard for monitoring and analysis in this
study is shown in Figure 5. The interface is designed for
easy navigation and interaction. Users can select
different modes such as camera or GPS mode from the
main interface. The dashboard also features real-time
visualization of collected field data, including palm fruit
ripeness classifications, GPS locations, temperature,
humidity, and pressure. Key functionalities include the
visualization of live feed data from the camera, which
displays bounding boxes around detected palm fruits
along with their ripeness classification. The dashboard
enables data visualization that aids estate plantation
management and decision-making by providing clear
insights into palm fruit ripeness classification and
associated GPS coordinates. It allows plantation
managers to monitor real-time updates on palm fruit
ripeness and the spatial distribution of scanned fruits
across the plantation. With this information, better
management and planning of harvesting can be
achieved by understanding the ripeness levels across
different locations. Additionally, the dashboard can
help monitor the fertilization status and needs,
ensuring optimal resource allocation and plantation
health.

E. Scalability and deployment in large
plantations

The feasibility of scaling the system across large
plantations can be achieved by leveraging edge
computing and sensor node networks. Rather than
relying on a single Raspberry Pi 4 Model B unit, the
system can be expanded into a distributed network of
edge nodes, where each node performs local processing
and communicates with a central system. This
decentralized approach allows for more efficient
handling of large areas by deploying multiple sensor
nodes across the plantation. Each node can
independently detect and classify ripeness, reducing the
computational load on a single device and enabling
real-time processing in various parts of the plantation.
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Figure 5. System dashboard.

Additionally, the use of wireless communication
between nodes can ensure seamless data sharing and
coordination, making the system adaptable for large-
scale  deployment in  complex  agricultural
environments. This approach ensures that the system
remains scalable, cost-effective, and adaptable to large

plantations without compromising on performance.

F. Hardware limitations and future
improvements

While the system demonstrated effective detection
and classification capabilities during onsite evaluation,
it is important to consider its performance under
prolonged usage in tropical conditions. The
Raspberry Pi, used as the edge device, may face
processing limitations and heat management
challenges due to the intensive computations required
by the YOLOv8n model. High ambient temperatures in
plantation environments could exacerbate these issues,
potentially leading to overheating and reduced
performance. Future iterations of the system should
explore solutions such as passive or active cooling
mechanisms, hardware optimization, or the use of
more robust edge devices to ensure consistent
performance in real-world conditions. In addition, the
model's accuracy decreases when detecting fruits on
taller trees, primarily due to the difficulty in capturing
clear images of higher fruit clusters in complex
environments. To address this limitation, future work

will explore integrating telescopic cameras or
developing a calibration method that accounts for
varying tree heights. These advancements could
significantly improve the model’s performance in
diverse agricultural settings, ensuring reliable detection
across a broader range of plantation environments.

IV. Conclusion

The proposed IoT-enabled palm fruit ripeness
detection system demonstrates significant potential in
optimizing crop growth by monitoring key
environmental parameters such as ripeness levels,
temperature, humidity, and location. Leveraging IoT
technologies, the system successfully collects real-time
data that provides farmers with actionable insights for
timely interventions to enhance crop health and
productivity. The findings highlight the promise of
integrating advanced technologies like YOLOv8n for
FFB ripeness detection, despite challenges such as
varying camera resolutions and the need for improved
training datasets to address lighting conditions and
diverse fruit types. The implementation of YOLOv8n
on a Raspberry Pi edge device has proven feasible;
however, continued research is essential to develop
simplified yet reliable algorithms that are optimized for
resource-constrained environments. Several
implementation challenges emerged, particularly in
achieving higher camera resolutions to improve image
quality for more accurate FFB detection. Training
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models to recognize multiple fruit types under varied
lighting conditions, including shadows, presented
complexities. Additionally, managing tree heights
effectively remains a critical limitation. Accurate
measurement and monitoring of tree growth are
essential for precision agriculture practices and
demand robust sensor technologies capable of handling
real-time data streams. To further enhance the
robustness of the system, specific improvements can be
made by integrating advanced image processing
techniques to handle low-light and shadowed
conditions commonly found in plantations.
Developing higher-resolution cameras and enhancing
training datasets to account for these conditions will
significantly improve the accuracy and reliability of
fruit detection. Moreover, future work should focus on
optimizing object detection algorithms for edge
computing platforms like Raspberry Pi, ensuring that
the system remains efficient even in challenging
environments. Expanding the system's scope beyond
fruit ripeness detection to include disease monitoring is
also crucial. By integrating disease detection algorithms
into the IoT framework, farmers can proactively
identify and manage plant diseases before they escalate,
enhancing crop resilience and promoting sustainable
farming practices. Advancing these algorithms,
especially for use in variable lighting conditions, will
further improve the system's effectiveness. Integrating
this IoT system with precision agriculture practices will
maximize agricultural  productivity. = Real-time
monitoring of tree heights, canopy growth, and other
metrics will enable farmers to implement targeted
interventions such as optimized irrigation, fertilization,
and pest management strategies. This integration not
only fosters resource efficiency but also promotes
sustainable farming practices tailored to the specific

needs of crops.
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