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Abstract 

This paper presents the development of an edge device for cost-effective implementation in agricultural environments. 
Experimental evaluations demonstrate accuracy and real-time performance, showcasing its potential for adoption in the 
industry. The proposed system provides a reliable tool for timely and accurate monitoring of fresh fruit bunch (FFB) ripeness, 
facilitating optimized crop management practices. The system employs the YOLOv8n model, renowned for its efficiency in real-
time object detection tasks, and is adapted to run on the resource-constrained Raspberry Pi 4. To ensure seamless operation on 
edge devices, model optimization techniques such as quantization and hardware acceleration are implemented, enabling rapid 
decision-making based on live data feeds. A dataset comprising 4,194 annotated FFB images was utilized, with a [3,681:348:165] 
training-validation-test split. Performance evaluation demonstrated an average precision of 0.898 and a mean average precision 
(mAP) of 0.952. The system potentially enhances yield quality and sustainability while supporting data-driven decision-making 
in precision agriculture. 

Keywords: edge devices; fresh fruit bunch ripeness detection; precision agriculture; Raspberry Pi 4; YOLOv8n object detection. 

 
 

I. Introduction 
Detecting palm fruit ripeness is crucial for 

optimizing oil quality and yield. Traditional manual 
methods are labour-intensive and prone to errors. 
Integrating Internet of Things (IoT) and edge 
computing with deep learning, such as the You Only 
Look Once version 8 (YOLOv8n) object detection 
model on a Raspberry Pi, offers a solutions that enables 
real-time, accurate ripeness detection, overcoming 
computational limitations, and enhancing efficiency 
[1][2][3][4]. 

Deep learning utilizes neural networks with many 
layers to model complex patterns in large data sets [5]. 
It has revolutionized fields such as image recognition, 

natural language processing, and autonomous driving 
[6]. Deep learning models, particularly convolutional 
neural networks (CNNs), are highly effective in image 
processing tasks, including detecting fruit ripeness by 
learning and recognizing intricate features from images 
[7]. 

In palm fruit ripeness detection, deep learning 
models are trained on datasets of palm fruit images at 
various ripeness stages. These models identify visual 
cues like colour, texture, and shape to predict fruit 
ripeness [8][9]. CNNs, designed for processing grid-
like data, are particularly suitable for this task due to 
their ability to learn hierarchical representations from 
visual data [8]. 
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Previous studies demonstrate the efficacy of CNNs 
in this domain. For instance, a study comparing 
DenseNet and AlexNet models found DenseNet 
outperformed AlexNet by 8.5 % in accuracy and 8 % in 
F1 score when classifying palm fruit ripeness levels [8]. 

Another approach combined deep neural networks 
(DNNs) and machine learning methods to determine 
ripeness stages in fruits like strawberries and tomatoes, 
achieving excellent classification performance [9]. The 
study implemented a deep learning-based method to 
classify oil palm fresh fruit bunches (FFB) into raw, ripe, 
and rotten categories.  

In [10], a machine learning (ML) model is proposed 
utilizing a dataset of 400 images. The CNN model 
achieved 92 % classification accuracy on test data, 
although performance dropped to 76 % during model 
testing, likely due to variations in background color and 
shape. Another possible reason for the decline is 
overfitting, where the model learned the training data 
too well but failed to generalize to unseen test data. This 
issue is primarily attributed to the small dataset size, 
with only 400 images, which may have caused the 
model to memorize patterns instead of learning 
meaningful features. 

The importance of ripeness classification in 
preventing overripe oil palm FFBs is emphasized as 
overripe fruits lead to higher free-fatty acid levels, 
reducing the quality of extracted oil [11][12]. The work 
in [11] focuses on the application of deep learning for 
object detection and classification, particularly using 
CNNs. The study proposes EfficientDet-Lite2, a 
specialized CNN model for oil palm FFB ripeness 
detection, which is optimized for real-time applications 
in plantation environments. EfficientDet-Lite2 utilizes 
a compound scaling approach, adopting the D2 
configuration for its input resolution. This 
configuration enhances the input resolution to 
448×448 pixels, enabling the model to capture finer 
details in images. In applications such as ripeness 
detection of palm FFBs, the higher resolution improves 
the differentiation of color gradients and texture 
variations, resulting in more accurate classification. 
The model integrates a bi-directional feature pyramid 
network (Bi-FPN) with five layers and three box classes 
per layer. The proposed model achieved an accuracy of 
84 % when tested in Indonesian plantations, 
demonstrating its effectiveness in real-world scenarios. 
The potential of leveraging EfficientDet-Lite2 for 
accurate and efficient ripeness classification could 
significantly enhance harvesting decisions and overall 
palm oil quality. The Bi-FPN structure, while efficient, 
may struggle with highly occluded or clustered FFBs, 
where overlapping objects and varying lighting 
conditions reduce precision detection. This could lead 

to misclassifications in real-world plantation settings, 
particularly in dense foliage or shadowed areas, 
affecting its reliability in practical harvesting 
applications. 

YOLO deep learning model has gained popularity 
for its speed and accuracy in object detection, treats 
object detection as a single regression problem, 
mapping pixels to bounding box coordinates and class 
probabilities. This enables real-time processing, 
essential for applications like palm fruit ripeness 
detection in field conditions [13][14]. The evolution 
and key feature of YOLO detection models are shown 
in Table 1 [15][16][17][18][19][20][21]. 

Recent studies have demonstrated the effectiveness 
of YOLO-based models in palm oil ripeness detection. 
The work in [22] highlighted YOLOv3's real-time 
detection capabilities, while [23] emphasized its role in 
improving classification accuracy. The study in [24] 
showcased YOLO's robustness using video datasets and 
[13] found that YOLOv3 is superior to ResNet50 in 
both accuracy and speed. Further advancements 
include the development of a YOLOv4-based system 
with 87.9 % mAP in [14] and the exploration of 
YOLOv8, achieving high precision and recall in 
ripeness prediction. These findings underscore YOLO’s 
reliability for real-time agricultural applications. 

Implementation on Raspberry Pi is an alternative 
approach to reduce costs and energy consumption in 
embedded system for object detection classification 
systems. The work in [25] demonstrate that YOLO-
based object detection can be successfully deployed on 
resource-constrained embedded platforms, achieving 
near real-time performance suitable for monitoring 
and detection applications. This highlights the 
feasibility of low-power, cost-effective, edge-based 
vision systems as an alternative to GPU-dependent 
solutions [25]. 

Further evidence supporting efficient deep learning 
deployment on resource-constrained devices is 
provided in [26]. The study shows that transfer learning 
enables high-accuracy deep learning applications on 
Raspberry Pi despite limited computational resources. 
By comparing InceptionV3 and the lightweight 
MobileNetV2 architecture, the results indicate that 
MobileNetV2 achieves superior accuracy and F1 score 
while maintaining computational efficiency, making it 
more suitable for real-time edge applications. These 
findings emphasize the importance of lightweight 
architecture and model reuse strategies in achieving 
reliable performance on low-power embedded 
platforms. 

YOLOBench systematically evaluates YOLO-based 
detectors on embedded platforms and shows that 
multiple YOLO variants achieve competitive accuracy–
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latency trade-offs on ARM CPUs, including Raspberry 
Pi. These findings support the use of lightweight YOLO 
models as practical alternatives to computationally 
intensive state-of-the-art detectors for edge 
deployment [27]. In [28] Deep Q-Learning was 
combined with YOLOv3 for real-time object detection 
and recognition on a Raspberry Pi, with accuracy 
enhanced through data augmentation. This 
implementation demonstrated adaptability to resource 
constraints, offering cost-effective, energy-efficient 
solutions for autonomous vehicles. 

Deploying YOLO-based deep learning models in 
embedded systems for IoT applications, including palm 
fruit ripeness detection, presents several challenges, 
particularly related to hardware limitations, 
computational constraints, power consumption, and 
real-time processing requirements. The YOLOv8 
model, with its millions of parameters, requires GPU 
acceleration, which most IoT devices lack. As a 
complex CNN-based model, it is computationally 
intensive and difficult to run on resource-constrained 
hardware. To address this challenge, a more efficient 
alternative is to use lightweight versions like YOLOv8n, 
which are optimized for edge deployment while 
maintaining reasonable accuracy. Another alternative 
is to implement edge devices, where the model runs 
locally on the device instead of relying on cloud servers, 
and to deploy hybrid cloud-edge models that transmit 
only essential data (e.g., detection results) rather than 
raw images, optimizing both performance and 
bandwidth efficiency. The subsequent section will 

explore an IoT-enabled palm fruit ripeness detection 
system on edge devices using YOLOv8n on a Raspberry 
Pi 4 Model B for real-time, precise detection, 
overcoming challenges associated with deploying 
advanced models on resource-constrained devices. 

This work proposes an IoT-enabled palm fruit 
ripeness detection system using YOLOv8n on a 
Raspberry Pi 4 Model B. The system captures real-time 
images of oil palm fruits and classifies their ripeness 
stages, offering a scalable and cost-effective solution for 
precision agriculture. The novelty of this study lies in 
the adaptation and optimization of YOLOv8n for 
deployment on edge devices in tropical agricultural 
environments. The adaptation addresses real-world 
challenges such as environmental variations, model 
efficiency on low-power hardware, and real-time 
processing constraints. The study contributes to the 
field by demonstrating the feasibility of deploying high-
accuracy deep learning models for palm fruit ripeness 
detection on edge devices, offering a practical solution 
for improving harvesting efficiency in the palm oil 
industry. The subsequent sections will discuss existing 
detection methods, detail the proposed system, and 
evaluate its performance in real-world conditions. 

II. Materials and Methods 

A. System architecture 

The IoT-enabled palm fruit ripeness detection 
system is designed to enhance the efficiency and 
accuracy of palm oil fruit harvesting. This system 

Table 1. 
Evolution and general key features of YOLO object detection models.  

Version Year Key features Performance Architecture & techniques 

YOLOv1 2015 –
2016 

- Original YOLO model - Real-time detection 
- Lower accuracy 

- Single convolutional network predicting 
bounding boxes and class probs 

YOLOv2 2017 - Batch normalization 
- Anchor boxes 
- Multi-scale training 

- Improved accuracy and 
recall 

- Predefined anchor boxes 
- Training on different image sizes 

YOLOv3 2018 - Deeper network (Darknet-53) 
- Feature pyramid network (FPN) 

- Better for small object 
detection 

- 53-layer network 
- Multi-scale predictions 

YOLOv4 2020 - CSPDarknet53 
- Mish activation 
- Spatial pyramid pooing (SPP) 
- PANet 

- Enhanced accuracy and 
speed 

- Bag of freebies and 
specials 

- Advanced modules and data augmentation 
techniques 

YOLOv5 2020 - Model variants (s, m, l, x) 
- Integration with modern tools 

- Easier to use and 
accessible 

- Variants balancing speed and accuracy 

YOLOv6 2021 - Improved efficiency - Further performance 
improvements 

- Continued network and training strategy 
advancements 

YOLOv7 2022 - Enhanced efficient layer 
aggregation networks (E-ELAN)  

- Best balance of speed and 
accuracy 

- New architectural changes 

YOLOv8 2023 - Latest advancements 
- Further optimizations 

- Highest accuracy and 
speed 

- Continued improvements in architecture 
and training techniques 
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leverages real-time visual inspection using advanced AI 
techniques to determine the ripeness of palm fruits, 
while also incorporating geolocation tracking for 
precise data logging and environmental monitoring. 
The system operates through two primary modes, 
which are camera mode for real-time detection and 
global positioning system (GPS) Mode for location 
tracking and data synchronization. A visual 
representation of the proposed system is shown in 
Figure 1. 

B. Edge device setup 

The core of the proposed system is an edge 
computing platform based on the Raspberry Pi 4 Model 
B, powered by the Broadcom BCM2711 system-on-
chip (SoC). The BCM2711 integrates a quad-core ARM 
Cortex-A72 (64-bit) CPU operating at 1.5 GHz, which 
provides sufficient computational capability for 
running lightweight deep learning models on edge 
devices. The Raspberry Pi used in this study is equipped 
with 4 GB RAM, balancing performance and energy 
efficiency for real-time object detection tasks.  

Image acquisition is performed using an 8-
megapixel Raspberry Pi Camera Module V2, connected 
via the camera serial interface (CSI) interface to ensure 
low-latency data transfer. The system is powered using 
a 5 V, 3 A regulated power supply, suitable for both 
laboratory testing and portable field deployment using 
a power bank or battery pack. The detection and 
classification of the fruit's ripeness are carried out using 
the YOLOv8n deep learning model, which runs in real-
time on the device. The hardware setup also includes a 
fan for thermal management, with the RPi4 monitoring 
its temperature and regulating the fan speed, 
accordingly, forming a closed-loop system. 

The system integrates several sensors to support its 
functionality, namely camera module, GPS module, 

and BME 280 sensor. The camera module is 8MP and 
captures images of palm fruits for visual inspection and 
ripeness detection. The YOLOv8n model processes 
these images in real-time to classify the ripeness of the 
fruits. The GPS module (Neo 6M) is used for 
geolocation tracking, the GPS module logs the device's 
coordinates whenever a button is pressed in GPS Mode. 
This ensures that the location of each fruit detection 
event is accurately recorded. This BME280 sensor is 
used for environmental monitoring, providing data on 
temperature, humidity, and atmospheric pressure. 
These parameters are crucial for analyzing the 
conditions under which the palm fruits are growing 
and can impact the ripeness detection accuracy. 

C. Communication protocols 

Data transmission in the proposed system is 
managed to cope with the challenges of intermittent 
connectivity in plantation environments. The primary 
communication protocols include long range wide area 
network (LoRaWAN) communication, IoT gateway to 
cloud, offline data logging, and data synchronization. 

LoRaWAN is employed for transmitting data from 
the handheld device, which includes the RPi4, camera, 
BME280 sensor, and GPS module, to an IoT gateway. 
LoRaWAN is chosen for its low power consumption 
and long-range communication capabilities, making it 
ideal for large plantation areas. The IoT gateway 
receives data from the handheld device via LoRaWAN 
and then connects to a cloud database. This setup 
ensures that data collected in the field is reliably 
transmitted to the cloud for further processing and 
storage. 

In scenarios where immediate transmission is not 
possible, offline data logging mode is activated, where 
data are logged locally on the device in JavaScript object 
notation (JSON) format. This approach ensures that no 

 
Figure 1. Block diagram of the proposed IoT-enabled palm fruit ripeness detection system. 
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data is lost due to connectivity issues. Once a stable 
connection is available, Data synchronization mode is 
activated, where the system uploads the logged data to 
the cloud database. The data can then be accessed and 
visualized using a dashboard. 

D. Ripeness detection using YOLOv8n 

The YOLOv8 implementation in the proposed 
system leverages pre-trained YOLOv8n models that are 
fine-tuned on a custom dataset of oil palm fruit images 
categorized by ripeness stages. Roboflow was used to 
annotate each image for palm oil fruit ripeness 
classification. Quality training data is crucial for 
accurate supervised deep learning models. Data 
augmentation techniques were applied to enhance 
model performance by creating variations in images 
through flipping, rotating, adjusting exposure, and 
brightness [29][30]. These methods aimed to expand 
the dataset, improve model generalization, and prevent 
overfitting. This approach ensures reliable 
classification of palm oil fruit ripeness, benefiting 
agricultural management practices. 

The process begins with data collection and 
annotation, where a diverse set of images of oil palm 
fruits at various ripeness stages is collected and labelled 
(kurang masak – unripe, masak – ripe, terlalu masak – 
overripe) to create an accurate training dataset. This 
annotated dataset is then used to fine-tune the pre-
trained YOLOv8n model, employing techniques such 
as data augmentation to enhance the model's 

robustness and improve its performance. An 
illustration of the model training and testing workflow 
is shown in Figure 2. 

The dataset was split into training (88 %), validation 
(8 %), and test sets (4 %), resulting in 3681, 348, and 165 
images respectively, as shown in Table 2. Each image 
underwent critical preprocessing steps to standardize 
and enhance model robustness. Table 3 lists the 
preprocessing steps which incluce auto-orientation, 
3024×4032 resizing to 640×640 pixels, and 
augmentation techniques such as horizontal flipping, 
90° rotations (clockwise, counter-clockwise, and upside 
down), random cropping (0 % to 20 % zoom), and 
grayscale conversion for 15 % of images. These steps 
diversified the training data, improving the model's 
ability to generalize across different inputs. 

E. System operation and data acquisition 
scenarios 

When the handheld device is powered on, it 
initializes the screen and GPS module, as well as 
launches the device’s graphical user interface (GUI). 

  

(a) (b) 

Figure 2. Workflow of YOLOv8n on IoT-enabled palm fruit ripeness detection system: (a) model training; and (b) model testing. 

Table 2. 
Dataset split and number of images. 

Dataset Split Percentage Number of images 

Training Set 88 % 3681 

Validation Set 8 % 348 

Test Set 4 % 165 
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The user interface presents mode selection and a 
Dashboard. Pressing button 1 or 2 activates camera or 
GPS mode, respectively. The health monitoring 
features, which include battery and sensor status, of the 
device operates within a closed-loop system, tracking 
the handheld device temperature and adjusting the fan 
speed accordingly. Data synchronization occurs when 
the GPS mode is active. 

During field deployment, data acquisition was 
conducted under two distinct operational scenarios, 
namely FFB detection on the tree and FFB detection on 
the ground. In the scenario of FFB on the tree, the 
handheld device is used to capture images of FFBs that 
are still attached to the palm tree. The operator 
positions the camera toward the palm canopy at an 
appropriate distance to ensure sufficient visibility of the 
FFB. This setup represents pre-harvest inspection, 
enabling ripeness assessment directly on the tree to 
support harvesting decisions. 

In the FFB Detection on the ground scenario, the 
handheld device is used to scan harvested FFBs placed 
on the ground. The camera is oriented downward 
toward the FFB, representing post-harvest verification 
and grading, where reduced occlusion and closer 
proximity allow detailed ripeness evaluation. 

Upon activation, the camera mode initiates a live 
feed with vision AI. The system awaits the presence of 
a palm oil fruit within the camera frame. Once detected, 
the YOLOv8n palm oil fruit model processes the image, 
performs detection, and visualizes a bounding box 
around the fruit, indicating its ripeness classification. 
The system then waits for button input to log the 
ripeness classification. In the GPS mode, the device 
attempts to obtain a position fix from satellites, parsing 
raw data into latitude and longitude, and displaying this 
information on the screen. The system then waits for 
button input to log GPS data.  

During both acquisition scenarios, environmental 
parameters are simultaneously recorded using the 
BME280 sensor, including ambient temperature, 
relative humidity, and atmospheric pressure, to provide 
contextual information for each detection event. The 
handheld device saves location, environmental data 

and classification results (results of ripeness level, 
location, temperature and humidity) in JSON files, 
which are later synchronised to an IoT gateway using 
LoRaWAN. The IoT gateway then uploads the data to 
a cloud database using the message queuing telemetry 
transport (MQTT) protocol. The MQTT broker on the 
cloud server receives and stores the data. The 
dashboard retrieves the data from the cloud database to 
display real-time updates on palm fruit ripeness and 
location. Additionally, the handheld device 
continuously checks for Wi-Fi connections to 
synchronize and send data to the cloud when available. 

III. Results and Discussions 

A. Visual analysis of palm fruit ripeness model 
evaluation indicators 

The efficacy of the developed model is evaluated 
through several key metrics illustrated in Figure 3, 
which depict its performance on both the training and 
validation datasets. The graphs bounding box loss 
(train/box_loss, val/box_loss) show the accuracy of the 
model in predicting bounding boxes around palm oil 
fruits [31]. Lower values in these metrics indicate better 
alignment between predicted and ground truth 
bounding boxes, as depicted by the downward trend in 
the graphs. The metrics classification loss 
(train/cls_loss, val/cls_loss) assesses how accurately the 
model predicts the ripeness classification of palm oil 
fruits. A decrease in these values across epochs signifies 
improved classification performance, as visually 
represented by the decreasing trend in the 
corresponding graphs [32]. The metrics distribution 
fitting loss (train/dfl_loss, val/dfl_loss) indicate the 
model’s ability to refine object boundaries, crucial for 
precise localization of diseased areas within palm oil 
fruits. A decline in these metrics demonstrates 
enhanced boundary detection, as reflected by the 
decreasing trend in the graphs over training epochs.  

The metric precision and recall 
(metrics/precision(B), metrics/precision(M), 
metrics/recall(B), metrics/recall(M)) evaluate the 

Table 3. 
Preprocessing steps description. 

Step Description 

Auto-orient Correct image orientation 

Resize Resize to 640x640 pixels 

Flip Horizontal flipping 

Rotate 90° rotations (clockwise, counter-clockwise, upside down) 

Crop Random cropping (0 % min zoom, 20 % max zoom) 

Grayscale Apply to 15 % of images 
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model’s precision in correctly identifying ripe, under 
ripe, and over ripe palm oil fruits (B for boxes and M 
for mass). Precision measures the accuracy of positive 
predictions, while recall assesses the model's ability to 
capture all relevant instances of ripe fruits [33]. The 
trends in precision and recall metrics over time, visible 
in the graphs, indicate the model's effectiveness in 
distinguishing between different ripeness levels of palm 
oil fruits. 

The model demonstrates an average precision (AP) 
of 0.898, indicating its accuracy in predicting the 
correct class labels for the detected objects. Average 
precision is a crucial metric in object detection, 
reflecting the precision of the model across various 
thresholds. The model's average recall (AR) values are 
0.945 for the “masak” (ripe), “kurang masak” (under 
ripe), and “terlalu masak” (overripe) classes. This high 
recall value signifies that the model effectively identifies 
a significant proportion of true positives for each class, 
ensuring that most of the correctly classifiable instances 
are detected. The model achieves a mean average 
precision (mAP) of 0.952. The mAP is a measure that 
averages the precision across all classes and detection 
thresholds, providing an overall performance 
evaluation of the model. A high mAP value indicates 
that the model performs consistently well across all 
categories of palm fruit ripeness, making it a reliable 
tool for real-world agricultural applications.  

Human accuracy in visual ripeness detection for 
palm fruits typically ranges between 85-90 % in 
controlled conditions, varying with assessor experience 
and environmental factors. Compared to this 
benchmark, the YOLOv8n model’s mAP of 0.952 
demonstrates superior accuracy and reliability, 

especially in challenging conditions like poor lighting 
or high humidity [21]. Traditional methods, such as 
color thresholding, often falter under such conditions, 
whereas deep learning models, including CNNs, have 
achieved exceptional accuracy in similar tasks, 
reporting up to 99.89 % accuracy, with F-measure, 
precision, and recall values of 99.88 %, 99.90 %, and 
99.85 %, respectively [34]. This highlights YOLOv8n’s 
potential to enhance or replace manual assessments in 
ripeness detection, enabling precise and timely 
interventions in agricultural management. 

B. Evaluation of the optimum model 

The evaluation of the optimum model involved an 
onsite test of the IoT-enabled palm fruit ripeness 
detection system. The test was conducted with two 
groups, each scanning FFB both on the ground and on 
the trees. The system successfully detected and 
classified the fruits according to the trained clusters 
mentioned earlier. As shown in Figure 4, the detection 
and prediction results illustrate the system's capability 
to identify and classify palm fruits both as loose fruit on 
the ground and as fruit on palm trees. The figure 
highlights the successful application of the model in 
real-world conditions. 

The detection and prediction results inferred the 
system's capability to identify and classify palm fruits 
both as loose fruit on the ground and as fruit on palm 
trees. For FFB on the ground, the system demonstrated 
high accuracy in detecting and classifying the fruits. 
The detection and classification process were 
straightforward, with the camera easily capturing clear 
images of the FFB. The model's performance in this 

 
Figure 3. Model evaluation indicators. 
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scenario confirmed its reliability in identifying the 
ripeness levels of palm fruits at ground level. 

Scanning FFB on trees presented additional 
challenges, particularly for tall trees. While the system 
was able to detect and classify fruits on trees up to an 
eye-level height of approximately six feet, the accuracy 
decreased for taller trees. This reduction in accuracy 
can be attributed to the difficulty in capturing clear 
images of the fruits, which are often obscured by foliage 
or situated at angles that are not ideal for the camera. 

Despite these challenges, the model performed 
satisfactorily at eye-level height, accurately identifying 
and classifying the ripeness of the fruits. This indicates 
that while the system is effective for ground-level and 
lower tree-level scanning, improvements in image 
capture techniques or additional training data may be 
required to enhance performance for taller trees. 

In conclusion, the onsite evaluation demonstrated 
that the IoT-enabled system is effective for detecting 
and classifying palm fruit ripeness at ground level and 
up to a certain tree height. Future work could focus on 
addressing the challenges associated with taller trees to 
further optimize the model's performance. 

C. Performance comparison with previous 
studies 

To evaluate the performance of the proposed 
system, a comparative analysis was conducted against 
previous studies utilizing various deep learning models 
for palm fruit ripeness detection, as shown in Table 4. 
The comparison includes key metrics such as precision 
and recall, which are critical for assessing the reliability 
and accuracy of the detection models. The proposed 
YOLOv8n model achieved a precision of 0.952 and a 
recall of 0.945, demonstrating a balanced performance 

     

    
(a) 

     
(b) 

Figure 4. Detection and predictions on site: (a) loose fruit; and (b) fruit on palm tree. 
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in accurately detecting ripe palm fruit bunches. 
Compared to earlier works, the results indicate 
competitive accuracy and recall values. 

In comparison to YOLO-based models, the study in 
[35] utilized YOLOv8 and reported the highest 
precision of 0.98, though its recall value was lower at 
0.83, suggesting that while it achieves high confidence 
in positive detections, it may miss some instances of 
ripe fruit. Similarly, the work in [33] using YOLOv4, 
reported 0.97 precision and 0.81 recall, indicating 
strong performance but with slightly lower recall than 
the proposed model. The approach in [37] employing 
YOLOv5, achieved the highest recall (0.98) while 
maintaining a precision of 0.98, surpassing most other 
models. However, the trade-off between model 
complexity and edge-device implementation 
constraints must be considered. In contrast, [8] 
implemented a DenseNet-based approach, which 
yielded 0.87 precision and 0.86 recall, showing lower 
accuracy compared to YOLO-based methods, likely 
due to the model's complexity and its suitability for 
real-time applications. Compared to existing works, the 
proposed YOLOv8n-based model balances both high 
precision (0.952) and high recall (0.945) while 
maintaining real-time performance on an edge device 
(Raspberry Pi 4). The results indicate improved 
detection capabilities over previous YOLOv4 and 
YOLOv5 implementations, while achieving 
comparable performance to YOLOv8 variants. The 
slightly lower precision than [35] and [37] is 
counterbalanced by a more balanced recall, ensuring 
fewer missed detections in real-world applications. 

The findings demonstrate the feasibility of 
implementing an edge computing solution for real-
time palm fruit ripeness detection, optimizing model 
performance while maintaining deployment efficiency. 
The results indicate that the YOLOv8n model is well-
suited for IoT-enabled agricultural applications, where 
real-time inference, low computational overhead, and 
high detection accuracy are required. 

D. Dashboard for monitoring and analysis 

The dashboard for monitoring and analysis in this 
study is shown in Figure 5. The interface is designed for 
easy navigation and interaction. Users can select 
different modes such as camera or GPS mode from the 
main interface. The dashboard also features real-time 
visualization of collected field data, including palm fruit 
ripeness classifications, GPS locations, temperature, 
humidity, and pressure. Key functionalities include the 
visualization of live feed data from the camera, which 
displays bounding boxes around detected palm fruits 
along with their ripeness classification. The dashboard 
enables data visualization that aids estate plantation 
management and decision-making by providing clear 
insights into palm fruit ripeness classification and 
associated GPS coordinates. It allows plantation 
managers to monitor real-time updates on palm fruit 
ripeness and the spatial distribution of scanned fruits 
across the plantation. With this information, better 
management and planning of harvesting can be 
achieved by understanding the ripeness levels across 
different locations. Additionally, the dashboard can 
help monitor the fertilization status and needs, 
ensuring optimal resource allocation and plantation 
health. 

E. Scalability and deployment in large 
plantations 

The feasibility of scaling the system across large 
plantations can be achieved by leveraging edge 
computing and sensor node networks. Rather than 
relying on a single Raspberry Pi 4 Model B unit, the 
system can be expanded into a distributed network of 
edge nodes, where each node performs local processing 
and communicates with a central system. This 
decentralized approach allows for more efficient 
handling of large areas by deploying multiple sensor 
nodes across the plantation. Each node can 
independently detect and classify ripeness, reducing the 
computational load on a single device and enabling 
real-time processing in various parts of the plantation. 

Table 4. 
Performance comparison of palm fruit ripeness detection models using different algorithms. 

Work Algorithm Precision Recall Method type 

Herman et al. [8] DesNet 0.87 0.86 PC-based simulation 

Purba et al. [35] YOLOv8 0.98 0.83 PC-based simulation 

Harmiansyah et al. [36] YOLOv5 0.87 0.95 PC-based simulation 

A.F. Japar et al. [33] YOLOv4 0.97 0.81 PC-based simulation 

Mamat et al. [37] YOLOv5 0.98 0.98 PC-based simulation 

Proposed method  YOLOv8n 0.952 0.945 Edge AI implementation 
 



N.H. Noordin et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 16 (2025) 305-317 

 

314 

Additionally, the use of wireless communication 
between nodes can ensure seamless data sharing and 
coordination, making the system adaptable for large-
scale deployment in complex agricultural 
environments. This approach ensures that the system 
remains scalable, cost-effective, and adaptable to large 
plantations without compromising on performance. 

F. Hardware limitations and future 
improvements 

While the system demonstrated effective detection 
and classification capabilities during onsite evaluation, 
it is important to consider its performance under 
prolonged usage in tropical conditions. The 
Raspberry Pi, used as the edge device, may face 
processing limitations and heat management 
challenges due to the intensive computations required 
by the YOLOv8n model. High ambient temperatures in 
plantation environments could exacerbate these issues, 
potentially leading to overheating and reduced 
performance. Future iterations of the system should 
explore solutions such as passive or active cooling 
mechanisms, hardware optimization, or the use of 
more robust edge devices to ensure consistent 
performance in real-world conditions. In addition, the 
model's accuracy decreases when detecting fruits on 
taller trees, primarily due to the difficulty in capturing 
clear images of higher fruit clusters in complex 
environments. To address this limitation, future work 

will explore integrating telescopic cameras or 
developing a calibration method that accounts for 
varying tree heights. These advancements could 
significantly improve the model’s performance in 
diverse agricultural settings, ensuring reliable detection 
across a broader range of plantation environments. 

IV. Conclusion 
The proposed IoT-enabled palm fruit ripeness 

detection system demonstrates significant potential in 
optimizing crop growth by monitoring key 
environmental parameters such as ripeness levels, 
temperature, humidity, and location. Leveraging IoT 
technologies, the system successfully collects real-time 
data that provides farmers with actionable insights for 
timely interventions to enhance crop health and 
productivity. The findings highlight the promise of 
integrating advanced technologies like YOLOv8n for 
FFB ripeness detection, despite challenges such as 
varying camera resolutions and the need for improved 
training datasets to address lighting conditions and 
diverse fruit types. The implementation of YOLOv8n 
on a Raspberry Pi edge device has proven feasible; 
however, continued research is essential to develop 
simplified yet reliable algorithms that are optimized for 
resource-constrained environments. Several 
implementation challenges emerged, particularly in 
achieving higher camera resolutions to improve image 
quality for more accurate FFB detection. Training 

  

  
Figure 5. System dashboard. 
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models to recognize multiple fruit types under varied 
lighting conditions, including shadows, presented 
complexities. Additionally, managing tree heights 
effectively remains a critical limitation. Accurate 
measurement and monitoring of tree growth are 
essential for precision agriculture practices and 
demand robust sensor technologies capable of handling 
real-time data streams. To further enhance the 
robustness of the system, specific improvements can be 
made by integrating advanced image processing 
techniques to handle low-light and shadowed 
conditions commonly found in plantations. 
Developing higher-resolution cameras and enhancing 
training datasets to account for these conditions will 
significantly improve the accuracy and reliability of 
fruit detection. Moreover, future work should focus on 
optimizing object detection algorithms for edge 
computing platforms like Raspberry Pi, ensuring that 
the system remains efficient even in challenging 
environments. Expanding the system's scope beyond 
fruit ripeness detection to include disease monitoring is 
also crucial. By integrating disease detection algorithms 
into the IoT framework, farmers can proactively 
identify and manage plant diseases before they escalate, 
enhancing crop resilience and promoting sustainable 
farming practices. Advancing these algorithms, 
especially for use in variable lighting conditions, will 
further improve the system's effectiveness. Integrating 
this IoT system with precision agriculture practices will 
maximize agricultural productivity. Real-time 
monitoring of tree heights, canopy growth, and other 
metrics will enable farmers to implement targeted 
interventions such as optimized irrigation, fertilization, 
and pest management strategies. This integration not 
only fosters resource efficiency but also promotes 
sustainable farming practices tailored to the specific 
needs of crops. 
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