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Abstract 

The advancement of technology in the medical field has led to innovations in assistive devices, including wheelchairs, to 
enhance the mobility and independence of individuals with disabilities. This study investigates the use of electromyography 
(EMG) signals from hand muscles to control a wheelchair using the k-Nearest Neighbor (kNN) classification method. kNN is a 
classification algorithm that identifies objects based on the proximity of similar objects in the feature space. The wheelchair 
control process begins with the development of a kNN model trained on EMG signal data collected from five respondents over 
30 seconds. The data was processed using feature extraction techniques, namely mean absolute value (MAV) and root mean 
square (RMS), to identify motion characteristics corresponding to five types of movement: forward, backward, right, left, and 
stop. The extracted features were classified using the kNN algorithm implemented on a Raspberry Pi 3. The classification results 
were then used to control the wheelchair through an Arduino UNO microcontroller connected to a BTS7960 motor driver. The 
study achieved an average accuracy of 96 % with the MAV feature and 𝑘𝑘 = 3. Furthermore, combining MAV and RMS features 
significantly improved classification accuracy. The highest accuracy was obtained using the combination of MAV and RMS 
features with k = 3, demonstrating the effectiveness of feature selection and parameter tuning in enhancing the system's 
performance. 

Keywords: assistive technology; electromyography signal; feature extraction; k-Nearest Neighbor classification; wheelchair 
control system. 

 

I. Introduction 

People with physical disabilities often encounter 
substantial mobility barriers, including limited 
accessibility, high transportation costs, and complex 
travel planning [1][2]. These issues affect both 

motorized and non-motorized travel, ultimately 
limiting access to essential services and reducing 
quality of life [2]. Autonomous vehicles (AVs) have 
been proposed as a long-term solution, with studies 
reporting generally positive attitudes toward AVs 
among people with disabilities [3]. Nonetheless, 
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concerns remain regarding their accessibility, safety, 
and reliability [3]. For older adults with chronic 
mobility impairments, daily activities pose persistent 
challenges, often requiring adaptive strategies such as 
assistive tools, caregiver support, or modified 
routines [4]. Addressing these challenges calls for 
increased awareness among policymakers and targeted 
actions to improve transportation accessibility [2]. 

In the short term, electric-powered wheelchairs 
(EPWs) have emerged as a promising mobility solution. 
Recent advancements include pedal-operated speed 
controls [5], seating safety mechanisms using position 
sensors [6], and head gesture-based controls employing 
gyroscopes for users with tetraplegia [7]. 
electromyography (EMG)-based control systems have 
also been developed, leveraging muscle contractions—
particularly from the neck and facial regions—for 
wireless control in users with quadriplegia [8]. These 
innovations aim to increase autonomy and improve the 
quality of life for individuals with diverse mobility 
limitations. 

Recent research has focused on utilizing EMG 
signals to enable intuitive wheelchair control through 
the detection of muscle contractions from the face, neck, 
and forearms [9]. EMG-based wheelchairs can 
interpret subtle muscle twitches to perform directional 
movements [10]. Wireless systems have gained traction 
due to their flexibility and user comfort [11], and 
integration with electroencephalography (EEG) has 
been explored to enhance control accuracy [12]. These 
systems typically process EMG signals through stages 
of data acquisition, feature extraction, and 
classification to execute commands such as moving 
forward, turning, or stopping [13][14][15].  

These systems typically involve data acquisition, 
signal processing, feature extraction, and classification 
to generate control commands [15]. In this context, the 
effectiveness of EMG-controlled wheelchairs largely 
depends on the extraction of relevant features from 
EMG signals. Commonly used time-domain features 
include mean absolute value (MAV), root mean square 
(RMS), variance (VAR), and zero crossing (ZC), which 
provide meaningful indicators of muscle contraction 
intensity and variability [16][17][18]. MAV and RMS 
are essential for capturing amplitude characteristics of 
the signal, while VAR offers insights into contraction 
variability, and ZC indicates the frequency content of 
muscle activity [19][20][21][22]. Incorporating these 
features can improve classification robustness and 
responsiveness, particularly in real-time assistive 
applications such as wheelchairs and prosthetic 
control [23]. 

Studies have also explored various machine 
learning algorithms to classify EMG signals, achieving 

accuracies up to 95.42 % using decision trees and 
random forests [24]. A hand gesture-based control 
method for electric-powered wheelchairs (EPW) has 
been proposed to assist users with finger impairments. 
Among the tested recognition methods, linear 
regression (LR) and regularized linear regression (RLR) 
achieved accuracies of 94.85 % and 95.88 %, 
respectively, though they required user-specific 
training. To address this, user-independent models like 
multi-class support vector machines (MC-SVM) and 
decision trees (DT) were employed, reaching 99.05 % 
and 97.77 % accuracy, respectively [25]. 

Although various classification algorithms such as 
decision trees, random forests, support vector 
machines (SVM), and linear regression have achieved 
high accuracy in EMG signal recognition tasks, the k-
Nearest Neighbor (kNN) method remains an attractive 
alternative due to its simplicity, ease of implementation, 
and robustness when working with small or noisy 
datasets. Time-domain EMG features such as MAV, 
VAR, ZC, and RMS are also widely used because they 
are computationally efficient and effective for 
capturing key characteristics of muscle activity. 
However, most existing studies have focused primarily 
on general gesture recognition or controlled laboratory 
scenarios, and there is still limited research on the 
practical performance of these methods for real-time 
wheelchair control, especially when relying on hand 
muscle signals. Challenges such as individual signal 
variability, susceptibility to noise, and the demand for 
consistent feature extraction in real-world conditions 
remain open issues. Therefore, this study aims to 
address these gaps by implementing the kNN method 
in combination with MAV, VAR, ZC, and RMS 
features to classify hand muscle contractions for 
electric wheelchair control. This approach is expected 
to improve classification accuracy, enhance real - time 
performance, and contribute to the development of 
practical, reliable, and user-friendly EMG - based 
wheelchair control systems for individuals with motor 
impairments. 

II. Materials and Methods 

The study employed an experimental approach, as 
illustrated in Figure 1. Muscle signal (EMG) data were 
collected using a Myoarmband attached to the 
respondent's arm. Respondents were instructed to 
perform five specific movements corresponding to 
wheelchair control commands: relaxing for moving 
forward, clenching the fist for stopping, bending the 
arm backward for turning left, bending the arm 
sideways for turning right, and performing a shooting 
gesture for moving backward. The collected EMG data 
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were recorded and processed using feature extraction 
techniques, including MAV [26], VAR [27], ZC [28], 
and RMS [29] to identify the unique characteristics of 
each movement. 

MAV and RMS both represent the amplitude of the 
signal, with MAV representing the average muscle 
contraction force, and RMS representing the power 
component of the signal more sensitively. These two 
characteristics serve as the basis for distinguishing 
movement intensity, such as distinguishing between 
strong and weak movements. VAR completes the 
analysis by measuring the variability of muscle 
contraction, helping to distinguish between stable (grip 
holding) and dynamic (turning or changing direction) 
movements. 

These extracted features were then analyzed using 
the k-Nearest Neighbor (kNN) method to classify the 
test data, and the classification results were 
subsequently used to control the wheelchair. 

A. Data collection 

The data collection phase was conducted with five 
respondents, each guided through the procedure 
during the session. The respondents’ characteristics are 
tabulated in Table 1. 

First, the EMG sensor was attached to the forearm 
just below the elbow, with the LED indicator on the 

Myo Armband aligned to the back of the hand to ensure 
consistent positioning for targeting the desired muscle 
groups. The use of eight equally spaced surface EMG 
electrodes circumferentially around the forearm 
follows the configuration employed by widely adopted 
devices such as the Myo Armband, aligning with 
standard practices in multi-channel surface 
electromyography (sEMG) gesture recognition 
[30][31]. This arrangement ensures comprehensive 
coverage of both flexor and extensor muscle groups, 
supporting uniform and reliable signal acquisition as 
illustrated in Figure 2 [32]. 

In the next step, respondents were instructed to 
perform each movement for 30 seconds. The 
movements were in accordance with certain 
commands, including: a gesture of relaxing the hand to 
move forward, a gesture of clenching the hand to stop, 
a gesture of shooting the hand to move backward, a 
gesture of bending the arm backward to turn left, and a 
gesture of bending the arm sideways to turn right. The 
instructional movements are illustrated in Figure 3. 

B. Muscle signal data 

At this stage, the muscle signal data, for each 
movement, were analyzed to identify the characteristics 
of the hand movements. The EMG signal is 
characterized by a frequency range of 20 Hz to 500 Hz 
and generates an amplitude when muscle contraction 
occurs [33][34]. An example of the muscle signal 
readings for the thumb and index finger open 
movement is shown in Figure 4. 

This paper utilized surface EMG (sEMG). sEMG is 
a non-invasive technique for recording electrical 
activity from superficial skeletal muscle during 
contractions [35]. The signal characteristics depend on 
muscle fiber membrane potentials and neural 
activation from motor neurons [36]. Each data 

 
Figure 1. Block diagram of hand gesture classification process for electric wheelchair control using EMG signal and kNN method. 

Table 1.  
Respondent characteristics. 

No. Age Weight (kg) Height (cm) BMI 

1. 22 65 163 24.5 

2. 22 75 187 21.4 

3. 22 78 169 27.3 

4. 22 48 150 21.3 

5. 22 70 169 24.5 
*BMI = Body mass index 
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collection has 8 signal readings that show differences in 
muscle activity. Figure 4 shows channel 3 (green), 
channel 2 (red), and channel 1 (blue) experiencing 
muscle activity that causes contraction, while on other 
channels, there is no muscle contraction. Table 2 shows 
the 8-channel muscle activity characteristics in five 
different movements. 

C. Feature extraction 

In analyzing muscle signals using EMG, a method is 
needed to facilitate data processing, namely, feature 
extraction. Feature extraction is performed after the 
data normalization process (threshold) to change the 
EMG data to positive values. Negative signals in EMG 
data are removed through the threshold process, so 
only positive data is obtained. This process is carried 
out for signal amplitude processing because the 
calculation uses positive values. The amount of data 

obtained in each movement is approximately 3000 data 
points on each channel. The data is processed with 
extraction features including MAV, VAR, and RMS, 
after which the data is used as training or testing input. 

 
Figure 2. Placement of the EMG sensor [32]. 

 
Figure 3. (a) Relaxed movement; (b) palmar grasping with thumb straight; (c) finger gun gesture; (d) sideways wrist extension; and (e) backward 
wrist flexion. 

Table 2.  
Respondent characteristics. 

No. Movement class C1 C2 C3 C4 C5 C6 C7 C8 

1 Relax         

2 palmar grasping with thumb straight         

3 sideways wrist extension         

4 finger gun gesture         

5 backward wrist flexion         

  

 
Figure 4. Muscle signals when performing open thumb and index 
finger movements. 
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1) Mean absolute value (MAV) 

The MAV is a simple and widely used method for 
calculating the average amplitude of the EMG signal 
within a moving window [37]. In this study, MAV is 
computed by shifting the window every 100 data points. 
The MAV is calculated using equation (1). 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑥𝑥𝑛𝑛|𝑁𝑁
𝑛𝑛=1  (1) 

where 𝑁𝑁 is the total number of signal samples in each 
window and 𝑥𝑥𝑛𝑛  is the value of the 𝑛𝑛𝑡𝑡ℎ sample. The 
absolute value operator ensures that only the 
magnitude of each sample is included. 

2) Variance (VAR) 

The VAR is used to measure how much the EMG 
signal values deviate from the mean within a window 
[38]. A higher variance indicates greater fluctuation in 
the signal. Equation (2) shows the VAR feature formula 
as follows: 

𝑀𝑀𝑀𝑀𝑉𝑉 =  1
𝑁𝑁 − 1

 ∑ (𝑥𝑥𝑛𝑛 − 𝜇𝜇)2𝑁𝑁
𝑛𝑛=1  (2) 

where 𝑁𝑁 is the number of samples, 𝑥𝑥𝑛𝑛 is the 𝑛𝑛𝑡𝑡ℎ sample 
value, and 𝜇𝜇 is the average value of all samples in the 
window. 

3) Root mean square (RMS) 

The RMS method is another common feature that 
represents the square root of the mean of the squared 
EMG signal values [39]. It provides an estimate of the 
signal’s power. Equation (3) is the formula for RMS; 

𝑉𝑉𝑀𝑀𝑅𝑅 = 𝑀𝑀𝑅𝑅𝑅𝑅𝑅𝑅�
1
𝑁𝑁
∑ 𝑥𝑥𝑛𝑛2𝑁𝑁
𝑛𝑛=1  (3) 

where 𝑁𝑁 denotes the total number of samples, and 𝑥𝑥𝑛𝑛 
is the 𝑛𝑛𝑡𝑡ℎ signal sample. 

4) Zero crossing (ZC) 

The ZC counts how often the EMG signal changes 
its sign by crossing the zero line [40]. This feature can 
help detect frequency information in the signal. To 
reduce noise effects, a minimum threshold is applied so 
that only significant crossings are counted. The ZC is 
calculated using equation (4): 

𝑍𝑍𝑍𝑍 =  ∑ [𝑓𝑓(𝑥𝑥𝑖𝑖.𝑥𝑥𝑖𝑖+1)| ∩ |𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1| ≥ 10]𝑁𝑁−1
𝑖𝑖=1  (4) 

𝑓𝑓(𝑥𝑥) =  𝑓𝑓(𝑥𝑥) = � 1, 𝑖𝑖𝑓𝑓_𝑥𝑥 < 0
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒   

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖+1 are two consecutive signal samples, 
and 𝑁𝑁  is the total number of samples. The function 
𝑓𝑓(𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖+1) equals 1 if the product 𝑥𝑥𝑖𝑖. 𝑥𝑥𝑖𝑖+1 is negative—
meaning a zero crossing occurs—and the absolute 

difference 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1 is greater than or equal to the 
threshold; otherwise, it equals 0. 

D. kNN algorithm design 

Classification of wheelchair control using finger 
gestures is done using the kNN method. The k-Nearest 
Neighbor (kNN) method is a classification technique 
that categorizes new objects based on their proximity to 
training data samples [41]. In this research, the kNN 
method is used for the classification of hand 
movements in wheelchairs. This method uses 
Euclidean distance to determine the class of a data 
object [42].  

The system produces five output classes (labels), 
each of which is explicitly linked to a specific hand 
gesture detected from EMG signals, and corresponds to 
a distinct movement command for the wheelchair, as 
described below: 

• Class 0: Relaxed hand gesture → Move forward 
• Class 1: Fist (clenched hand) gesture → Stop 
• Class 2: Finger gun (shooting) gesture → Move 

backward 
• Class 3: Arm bent backward gesture → Turn left 
• Class 4: Arm bent sideways gesture → Turn right 

Each class represents a unique EMG signal pattern 
associated with a specific gesture. These gestures were 
performed by the user and recorded using the Myo 
Armband on the left forearm. The EMG signals were 
processed on a Raspberry Pi 3 using the Python 
programming language. The kNN classification was 
tested using different values of k, specifically k = 3, 5, 9, 
and 11, to determine the most suitable parameter 
setting for accurate real-time gesture recognition. The 
Euclidean distance equation is shown in equation (5): 

𝑑𝑑 = �  (𝑎𝑎12 − 𝑏𝑏1)2 + (𝑎𝑎2 − 𝑏𝑏2)2 + ⋯+ (𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)2      

= �∑ (𝑎𝑎𝑖𝑖 − 𝑏𝑏1)2𝑛𝑛
𝑖𝑖+1  (5) 

After training and testing the data from several 
respondents using various values of k, the next step 
involves sending the classification output to the 
Arduino microcontroller. To ensure compatibility with 
serial communication protocols, each of the five kNN 
classification results (0 to 4) is converted into its 
corresponding ASCII value, as follows: 

• Class 0 (Move forward): ASCII 51 ('3') 
• Class 1 (Stop): ASCII 50 ('2') 
• Class 2 (Move backward): ASCII 49 ('1') 
• Class 3 (Turn left): ASCII 48 ('0') 
• Class 4 (Turn right): ASCII 52 ('4') 

These ASCII values are transmitted via serial 
communication from the Raspberry Pi to the Arduino. 
On the Arduino side, each received character is mapped 
to a specific control command for the wheelchair 
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motors. This mapping ensures that the recognized 
hand gesture is correctly translated into the intended 
movement in real time. 

E. Motor control circuit of a wheelchair 

The system design is composed of low-level control 
and high-level control. High-level control consists of a 
Raspberry Pi as muscle signal processing and a Myo 
armband as a sensor. Data that has been trained on a 
Raspberry Pi using the kNN method will be 
programmed in the Arduino UNO microcontroller. 
Components at the low-level control consist of an 
Arduino UNO, 2 BTS7960 motor drivers, LM7805 
regulator, and a power supply in the form of a 24 V 
battery. The electronic system of the wheelchair can be 
seen in Figure 5. 

F. Evaluation 

Prior to real-time evaluation, an offline evaluation 
was conducted to determine the best combination of 
feature extraction method and k value in the k-Nearest 
Neighbor (kNN) algorithm. This evaluation uses 
accuracy metrics to assess the performance of hand 
gesture classification based on EMG signals. From the 
results, the configuration that gave the highest accuracy 
was selected as the basis for implementing the control 
system in the live test phase. 

The test track used to evaluate the performance of 
the wheelchair control system based on EMG sensors is 
illustrated in Figure 6. This evaluation focused on 
measuring the system’s accuracy, responsiveness to 
movement commands, and user comfort during 

 
Figure 5. Wheelchair electronic system. 

 

 
Figure 6. Test drive evaluation track. 
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operation. The user was required to navigate the 
wheelchair along a predefined path marked by black 
circles, which served as obstacles or directional 
markers. The path, shown with dashed lines and 
arrows, begins at the "Start" point and ends at the 
"Finish" point. On the right side of the figure, the spatial 
configuration of the obstacles is shown, with a 
horizontal spacing of 2 meters and a vertical spacing of 
2.5 meters. These dimensions were selected to provide 
a consistent testing environment and enable an 
objective assessment of the system’s navigation 
performance under conditions that mimic real-world 
scenarios. 

To evaluate the performance of the system at this 
stage, several indicators were recorded, namely: average 
travel time (in seconds), number of movement errors, 
and total number of movement commands performed 
during navigation. In addition, the number of 
repetitions of track training before testing was also 
recorded to record the level of user familiarity with the 
system. This evaluation aims to assess how well the 
system recognizes gestures in real conditions and how 
efficient and accurate the system is in translating user 
commands into wheelchair movements. 

III. Results and Discussions 

In the kNN classification stage, the data were 
categorized into five classes: forward, backward, right 
turn, left turn, and stop. A sample size of 1,500 data 
points was collected from each respondent over a 30 
second recording period. The features used in the 
classification included RMS, MAV, VAR, ZC, as well as 

combinations of two or three features. To evaluate the 
effect of the parameter k on classification accuracy, 
various values of 𝑘𝑘 were tested, including k = 3, 5, 9, and 
11. Additionally, a test drive evaluation was conducted 
to measure the response time of movements to 
instructions and the duration required to operate the 
wheelchair along a predefined track. 

A. Feature extraction training data results  

The respondent data collected during the 
acquisition phase were subsequently trained using 
variations in k-values for each feature. This process 
involved testing four different k-values (k = 3, 5, 9, 11) 
across four individual features (RMS, MAV, VAR, ZC) 
as well as their combinations. The goal was to evaluate 
the influence of k-value variations on the classification 
performance for each feature. After the training process, 
the resulting models were used for testing to assess their 
accuracy and reliability. Figure 7 presents the testing 
results for each feature under varying k-values, 
providing insights into the impact of feature selection 
and parameter tuning on system performance. 

Based on the graph, it can be observed that training 
data using a single feature type achieved optimal 
accuracy with k = 3. The average accuracy across the 
five respondents was 96 % when using k = 3 and 94 % 
with k = 9, both employing the MAV feature extraction 
method. Additionally, other feature types, such as RMS 
and ZC, achieved similar accuracy levels of 95 % with 
k = 3. In contrast, the VAR feature extraction method 
yielded the lowest accuracy, with only 83 % at k = 3. 
These results highlight the influence of feature selection 
and k-value on the system's classification performance. 

 
Figure 7. Graph of the effect of K value on accuracy 
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B. Testing the influence of feature 
combinations 

Feature extraction using combined features 
involves merging two or more types of feature 
extraction methods. The classification results using all 
combined features were compared with those obtained 
using combinations of two and three features. The 
purpose of this test was to analyze the impact of feature 
combinations on classification performance using the 
kNN method, focusing on Subject 5. Four different 
types of features were evaluated to determine which 
combinations improved classification accuracy and 
which combinations reduced it. The first test utilized 
combinations of two features, the second test involved 
three feature combinations, and the final test used all 
features combined. The results of the tests are 
summarized in Table 3. 

The investigation of feature combinations' 
influence on EMG signal classification revealed 
significant patterns in classification accuracy across 
different feature sets and k-values. The analysis was 
conducted using combinations of mean absolute value 
(MAV), root mean square (RMS), variance (VAR), and 
zero crossing (ZC) features through systematic testing 
of dual, triple, and quadruple feature combinations. 

In dual feature analysis, the MAV-RMS 
combination demonstrated superior performance with 
100.0 % classification accuracy consistently across all k-
values (k = 3, 5, 9, and 11), indicating a strong 
complementary relationship between these features. 
However, combinations involving the VAR feature 
showed noticeable performance degradation, with 
MAV-VAR and RMS-VAR combinations maintaining 

93.9 % accuracy at k = 3 and k = 5, before declining to 
86.3 % at k = 11. Combinations with the ZC feature 
maintained robust performance at 100.0 % for lower k-
values before slightly decreasing to 96.9 % at higher k-
values. 

The triple feature combinations revealed that 
MAV–RMS-VAR showed the poorest performance, 
with accuracy declining from 93.9 % to 86.3 % as k-
values increased. Other triple combinations 
incorporating ZC demonstrated more stable 
performance, maintaining 100.0 % accuracy at lower k-
values with only a modest decline to 96.9 % at higher k-
values. This suggests that the ZC feature helps mitigate 
the negative impact of VAR in combined features. 

The integration of all four features maintained 
perfect accuracy (100.0 %) at k = 3 and k = 5, with a 
slight decrease to 96.9 % at higher k-values. The VAR 
feature consistently emerged as a critical factor 
influencing classification stability, with its inclusion 
typically resulting in accuracy degradation of up to 
6.1 %. Conversely, the MAV-RMS combination proved 
most robust, while the ZC feature demonstrated a 
stabilizing effect when combined with other features. 

These findings emphasize the importance of 
strategic feature selection in EMG signal classification 
systems. The results indicate that while increasing the 
number of features doesn't necessarily improve 
classification performance, specific combinations can 
significantly enhance accuracy and stability. The 
consistent performance patterns observed provide 
valuable insights for developing more robust EMG 
classification systems, particularly where classification 
accuracy and stability are crucial factors. 

Table 3. 
Accuracy results of merging two feature types. 

Trial Feature 
Accuracy (%) 

k = 3 k = 5 k = 9 k = 11 

Combining two feature types     

1 MAV RMS   100.0 100.0 100.0 100.0 

2 MAV VAR   93.9 93.9 92.4 86.3 

3 MAV ZC   100.0 100.0 96.9 96.9 

4 RMS VAR   93.9 93.9 92.4 86.3 

5 RMS ZC   100.0 100.0 96.9 96.9 

6 VAR ZC   100.0 100.0 96.9 96.9 

Combining three feature types     

1 MAV RMS ZC  100.0 100.0 96.9 96.9 

2 MAV VAR RMS  93.9 93.9 92.4 86.3 

3 MAV ZC VAR  100.0 100.0 96.9 96.9 

4 RMS VAR ZC  100.0 100.0 96.9 96.9 

Combining four feature types     

1 MAV RMS ZC VAR 100.0 100.0 96.9 96.9 
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To provide a comprehensive understanding of the 
advancements in EMG-based wheelchair control 
systems, a comparative analysis of this study with prior 
research is presented in Table 4. This comparison 
highlights the relative strengths and limitations of 
various methods, offering a clearer context for 
evaluating the performance and practicality of the 
proposed approach. 

The comparison in Table 4 highlights the 
exceptional performance of the proposed kNN-based 
approach in EMG signal classification for wheelchair 
control. This study achieves the highest accuracy of 
100% using a combination of MAV and RMS features, 
showcasing the effectiveness of carefully selected 
feature combinations and the kNN algorithm in 
delivering reliable results. 

Prior studies, such as [25], demonstrate strong 
performance with MC-SVM, achieving 99.05 % 
accuracy. However, the slightly lower accuracy 
compared to this study reflects the advantages of the 
feature extraction and classification techniques applied 
here. Similarly, [24] reports a maximum accuracy of 
95.42 % using Decision Tree and Random Forest 
models, emphasizing the competitive edge of the kNN 
method in providing both simplicity and high accuracy.  

On the other hand, [15] achieves a maximum 
accuracy of 81.5 % using QDA, which is notably lower 
than the results achieved by kNN. This highlights the 
importance of selecting robust classification methods 
and effective feature sets for EMG signal analysis. In 
summary, the findings demonstrate that the proposed 
kNN-based approach, when paired with optimal 
feature combinations, outperforms alternative methods 
in terms of accuracy and reliability. This positions the 
method as a leading solution for EMG-based 
wheelchair control systems. 

C. Drive testing test  

The system performance was evaluated in a 
controlled indoor environment by involving three 
subjects, who were part of the five subjects used in the 
previous stage. The selection of these three subjects was 
based on considerations of consistency in performing 
gestures, as well as time efficiency and supervision 
during real-time testing. Thus, the testing remained 
methodologically consistent as it used the same 
subjects, and the main focus was on evaluating the 
performance of the system directly, rather than 
generalizing to new users. 

The test track, as illustrated in Figure 8, was 
designed with specific dimensions of 10 m in length and 
2 m in width, featuring ceramic tile flooring. To 
optimize the wheelchair's performance on this surface, 
the control parameters were carefully calibrated: 
forward and backward movements utilized a PWM 
value of 80 (30 % duty cycle), while turning movements 
(left and right) employed a PWM value of 100 (40 % 
duty cycle). These parameters were specifically tuned to 
ensure precise control and smooth operation on the 
ceramic surface. 

The evaluation protocol involved three subjects 
with varying physical characteristics, as shown in 
Table 5, each required to complete a sequence of nine 
distinct movements from the initial position to the 
return point. Prior to the actual testing, subjects 
underwent different numbers of training sessions to 
familiarize themselves with the gesture control system. 
This varying exposure to training provided an 
opportunity to assess the relationship between practice 
and performance. 

The results, as presented in Table 5, provide an early 
overview of how user characteristics and training 
exposure may influence performance in the EMG-

Table 4. 
Comparative analysis of EMG-based wheelchair control systems using various classification methods and features. 

Study Method used Performance 

[15] Quadratic discriminant analysis, LDA, SVM, decision tree Maximum accuracy of 81.5 % (QDA) 

[24] Decision tree, random forest Up to 95.42 % accuracy 

[25] Linear regression (LR), RLR, MC - SVM, Decision tree Accuracy: LR 94.85 %, RLR 95.88 %, MC - SVM 99.05 %, DT 
97.77 % 

This study k-Nearest Neighbor (kNN) 96 % accuracy (MAV), 100 % (MAV + RMS combination) 
 

Table 5. 
Test drive results. 

No Subject BMI Track training Average travel time Number of errors Total movement 

1 Subject 1 24.5 3X 75 s 2 9 

2 Subject 2 21.4 2X 79 s 3 9 

3 Subject 3 27.3 4X 70 s 1 9 
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based control system. Subject 3, with the highest BMI 
(27.3), achieved the most efficient performance—
completing the task in 70 seconds with only one 
prediction error. Notably, this subject also underwent 
the highest number of training sessions (4x), which 
likely contributed to their improved familiarity with the 
system and better overall control accuracy. 

In contrast, Subject 2, who had the lowest BMI 
(21.4) and the least amount of training (2x), recorded 
the longest completion time (79 seconds) and the 
highest number of errors (3). Subject 1, with a moderate 
BMI (24.5) and intermediate training exposure (3x), 
showed moderate performance results. These patterns 
suggest that training frequency may have a more direct 
impact on system performance than BMI alone. 

Although Subject 3 had a higher BMI, which in 
theory might attenuate surface EMG signals due to 
increased subcutaneous fat, the system's performance 
remained robust. This may indicate that the EMG-
based control system is relatively resilient to moderate 
variations in user anthropometrics.  

Overall, the findings emphasize the important role 
of training in improving user control efficiency. While 
early observations hint that BMI may not critically 
impair performance, especially when sufficient training 
is provided, further studies with larger sample sizes are 
needed to explore these effects in greater depth. The 

system’s apparent stability across varying user profiles 
in this small-scale trial supports its potential 
applicability, while also highlighting the need for 
structured user familiarization protocols during 
deployment. 

IV. Conclusion 

The conclusion that can be drawn based on the 
research that has been done is the classification of hand 
movements in controlling a wheelchair using the k-
Nearest Neighbor method. The best average accuracy is 
obtained using the MAV extraction feature, which is 
96% using the k = 3 value. The combination of 
extraction features can also affect the level of accuracy. 
Based on the training data, one of the respondents 
obtained a stable accuracy of 100% for the combined 
MAV feature with RMS, even though the value of k 
varies. Whereas in testing a combination of three 
features, the lowest accuracy value is obtained, namely 
the combination of MAV, VAR, and RMS features, 
with the highest accuracy of 93.90% with a value of k = 
3 and an accuracy of 86.30% with a value of k = 11. 
Apart from the features used, the k value in the test also 
affects the accuracy rate. The duration of travel time 
required for wheelchair control on a predetermined 
trajectory is 70 s with a distance of 10 m and 1 error. 

 
Figure 8. Wheelchair test drive track. 
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