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Abstract 

This paper presents an evaluation of stereo vision based on the semi-global block matching (SGBM) algorithm for distance 
estimation in an autonomous parking scenario using the CARLA simulator. Distance-disparity regression functions are explored 
to enhance distance estimation accuracy. The proposed distance estimation model was evaluated using the design science 
research methodology (DSRM) framework, with experimental validation conducted in CARLA’s promenade environment. The 
evaluation employed root mean square error (RMSE) and relative error metrics to assess performance. Experiments were 
performed within a range of 40-350 cm, which is relevant for autonomous parking applications. The experimental results show 
that the algorithm achieves an overall RMSE of 1.69 cm and an average relative error of 1.1 %. The findings contribute to the 
advancement of perception systems for autonomous vehicles, particularly in challenging environments. 

Keywords: autonomous parking; stereo vision; SGBM algorithm; distance estimation; CARLA simulator; perception system.  

 
 

I. Introduction 

The rapid advancement of autonomous vehicle 
technology has intensified the demand for robust and 
accurate perception systems capable of operating under 
diverse environmental conditions. Among the various 
sensing modalities employed in autonomous vehicles, 
stereo vision systems offer significant advantages, 
including cost-effectiveness [1], passive operation [2], 
and rich environmental information extraction [3]. 
Distance measurement using stereo vision has become 
a critical component in autonomous parking systems, 

where precise spatial awareness is essential for safe 
vehicle maneuvering in confined spaces.  

Traditional distance measurement techniques in 
automotive applications rely heavily on active sensors 
such as light detection and ranging (LiDAR) [4], radio 
detection and ranging (RADAR) [5], and ultrasonic 
sensors [6][7]. While these sensors provide accurate 
distance measurements, they are often expensive and 
may face limitations under certain environmental 
conditions [8]. Stereo vision systems, inspired by 
human binocular vision, offer a compelling alternative 
by utilizing two or more cameras to estimate depth 
information through triangulation principles [9]. 
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The accuracy of results obtained using stereo vision 
technology is highly dependent on the algorithm 
employed to process the acquired images [10]. The 
semi-global block matching (SGBM) algorithm 
represents a significant advancement in stereo vision 
technology, addressing many of the limitations of 
traditional block matching approaches. Unlike local 
methods that consider only small neighborhoods, 
SGBM incorporates global optimization techniques 
while maintaining computational efficiency suitable for 
real-time applications [11]. This capability makes 
SGBM particularly attractive for autonomous parking 
systems where both accuracy and processing speed are 
critical requirements.  

Furthermore, to ensure the robustness of such 
algorithms before real-world deployment, simulation 
environments have become indispensable tools for 
development and validation. The car learning to act 
CARLA simulator provides a comprehensive platform 
for testing autonomous driving algorithms in 
controlled yet realistic environments [12]. CARLA’s 
ability to simulate various weather conditions, lighting 
scenarios, and urban environments makes it an ideal 
testbed for evaluating stereo vision algorithms under 
diverse conditions, thereby accelerating the design and 
validation process for autonomous vehicle perception 
systems.  

Several articles have reported implementation of 
the SGBM algorithm, including vehicle speed 
measurement [13], pavement pothole detection [14], 
and obstacle detection in autonomous vehicle 
navigation [15][16]. However, no study has reported its 
adaptation in the CARLA simulator environment. The 
CARLA simulator features a promenade environment 
that provides unique challenges for autonomous 
vehicle perception systems due to factors such as 
varying lighting conditions, reflective surfaces, and 
atmospheric effects. Object detection and tracking may 
struggle under these conditions, necessitating 
algorithm enhancements and thorough evaluation [17]. 

This research addresses the critical need for reliable 
distance measurement systems in autonomous parking 
applications by proposing an enhanced SGBM 
algorithm specifically optimized for promenade 
environments. The primary contributions of this work 
include: (1) the development of an improved SGBM 
algorithm with enhanced accuracy for distance 
measurement, (2) comprehensive evaluation using 
multiple accuracy metrics in the CARLA simulator 
environment, and (3) validation of the proposed 
system’s suitability for autonomous parking perception 
systems in the critical distance range of 40-350 cm. 

II. Materials and Methods  

A. Stereo vision fundamental  

A stereo vision system operates on the principle of 
triangulation, utilizing the geometric relationship 
between corresponding points in multiple camera 
views to estimate depth information [18]. The 
fundamental mathematical model for stereo vision is 
based on the pinhole camera model and epipolar 
geometry principles. 

1) Camera model 

A 3D object can be projected onto a 2D image using 
a camera model, most often the pinhole camera. In this 
model, a point Q in 3D space is converted into a 2D 
point q on the image plane by the intersection of the 
line connecting C (camera center) and Q, with the 
image plane.  

In reality, the image is formed behind the camera 
center. However, for ease of calculation, the positions 
of the image and the camera center are swapped. The 
distance of the object from the camera is Z, the object's 
actual length is X, its image length is x, and the focal 
length is f. The image length x can be derived using the 
concept of similar triangles, as shown in equation (1). 

𝑥𝑥 = 𝑓𝑓 𝑋𝑋
𝑍𝑍

 (1) 

The world coordinate system (U, V, W) and camera 
coordinate system (X, Y, Z) are used to locate object 
position in 3D space. The forward projection is 
illustrated in Figure 1. A 3D point in space has the 
coordinates (X, Y, Z). A 2D point q is the projection of 
point Q and is located at (x, y). Using Thales’ theorem, 
the equation that relates the world point to the 
corresponding image point is expressed in equation (2). 

𝑥𝑥 = 𝑓𝑓 𝑋𝑋
𝑍𝑍

  and 𝑦𝑦 = 𝑓𝑓 𝑌𝑌
𝑍𝑍

 (2) 

As these equations are non-linear, homogeneous 
coordinates are employed for their solution. A 2D point 
is determined using the coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) as shown 
in equation (3). 

𝑥𝑥 = 𝑥𝑥
𝑧𝑧
 and 𝑦𝑦 = 𝑦𝑦

𝑧𝑧
 (3) 

In Figure 1, the projection matrix 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is 
depicted, with 𝑓𝑓  representing the focal length. The 
extrinsic parameters are contained within 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 
which include a 3x3 rotation matrix R and a 3x1 
translation vector T. These parameters determine the 
camera's orientation and position relative to the world 
frame and may vary depending on the specific world. 

The matrix 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is utilized to transform (𝑥𝑥,𝑦𝑦) to 
(𝑢𝑢,𝑣𝑣), pixel coordinates. This transformation considers 
two factors: the scale factor and the shift of the principal 
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point toward the upper-left corner. The intrinsic 
parameters are unique to each camera and are 
contained within the matrix 𝐾𝐾.  These parameters 
facilitate the conversion between the camera 
coordinates and the pixel coordinates within the image 
frame. A displacement of the center of the image plane 
is denoted by �𝑝𝑝𝑥𝑥,𝑝𝑝𝑦𝑦�

𝑇𝑇 ,  while the product of the 
physical focal length and 𝑠𝑠𝑥𝑥 gives 𝑓𝑓𝑥𝑥, and 𝑓𝑓𝑦𝑦 is derived 
from the product of the physical focal length and 𝑠𝑠𝑦𝑦 of 
the pixel. 

2) Lens distortion 

In practical application, no lens is perfectly free 
from distortion. The primary types of lens distortions, 
which include radial and tangential distortion, are 
detailed and modeled by Brown [19] and Fryer and 
Brown [20]. Radial distortion results from the inherent 
curvature of the lens, whereas tangential distortion 
arises from imperfections in the camera’s assembly or 
alignment. The initial position of the distorted point is 
(x, y), and its radial location is determined using 
equation (4). 

�𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐
� = �𝑥𝑥(1+𝑘𝑘1𝑟𝑟2+𝑘𝑘2𝑟𝑟4+𝑘𝑘3𝑟𝑟6)

𝑦𝑦(1+𝑘𝑘1𝑟𝑟2+𝑘𝑘2𝑟𝑟4+𝑘𝑘3𝑟𝑟6)� (4) 

where (𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐) denotes the new position obtained 
after distortion. The tangential distortion is represented 
by two parameters 𝑝𝑝1 and 𝑝𝑝2 as shown in equation (5). 

�𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐
� = �𝑥𝑥+(2𝑝𝑝1𝑥𝑥𝑥𝑥+𝑝𝑝2(𝑟𝑟2+2𝑥𝑥2))

𝑦𝑦+(𝑝𝑝1(𝑟𝑟2+2𝑦𝑦2)+2𝑝𝑝2𝑥𝑥𝑥𝑥)� (5) 

OpenCV was used to fix lens distortion as a part of 
image processing. OpenCV is an open sources image 

processing library [21]. OpenCV packages all the five 
distortion coefficients to form a 1 × 5 distortion vector 
in the following order: 𝑘𝑘1, 𝑘𝑘2, 𝑘𝑘3, 𝑝𝑝1, and 𝑝𝑝2. 

3) Stereo geometry and disparity 

A basic setup with two cameras to capture an image 
of the same 3D point Q is shown in Figure 2. The stereo 
geometry is based on epipolar geometry. The 𝑄𝑄𝐶𝐶𝑙𝑙𝐶𝐶𝑟𝑟 
plane is called the epipolar plane where the point Q is 
projected into the left and right image planes [22]. 
These projections are referred to as 𝑞𝑞𝑙𝑙  (left) and 𝑞𝑞𝑟𝑟 
(right).  

All points along the (𝐶𝐶𝑙𝑙𝑄𝑄) form a line, (𝑒𝑒𝑟𝑟𝑞𝑞𝑟𝑟), on the 
right image plane. This line is called the epipolar line 
associated with the 𝑞𝑞𝑙𝑙 point. It is essential to note that 
the corresponding point of 𝑞𝑞𝑙𝑙 on the right image plane 
must lie along this line. In simpler terms, one only 
needs to search along the epipolar line to the 
corresponding point, rather than searching the entire 
image. This concept is known as the epipolar constraint. 
Similarly, every point possesses its corresponding 
epipolar line in the opposite image. 

𝐶𝐶𝑙𝑙  and 𝐶𝐶𝑟𝑟  represent the left and right camera 
centers, respectively. As per the configuration depicted 
in Figure 2, the projection of 𝐶𝐶𝑟𝑟  onto the left image 
plane is 𝑒𝑒𝑙𝑙 , which is called the left epipole. In an 
analogous manner, 𝑒𝑒𝑟𝑟  is the right epipole. These 
epipoles are the points where the image planes intersect 
with the baseline 𝐶𝐶𝑙𝑙𝐶𝐶𝑟𝑟. 

Through the stereo rectification process, acquired 
images are used to generate the disparity map. As 
illustrated in Figure 3, the distance separating the 

 
 

Figure 1. Forward projection [5]. 
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centers of the left and right cameras is denoted as 𝐵𝐵. 
The coordinates 𝑞𝑞𝑙𝑙(𝑥𝑥𝑙𝑙 ,𝑦𝑦𝑙𝑙) for the projection of 𝑄𝑄 onto 
the left image plane and 𝑞𝑞𝑟𝑟(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) for the projection 
onto the right image plane are defined accordingly [22]. 
The variable Z signifies the distance from Q to the 
camera. After the stereo rectification, the y coordinates 
share common values, i.e., 𝑦𝑦 = 𝑦𝑦𝑙𝑙 = 𝑦𝑦𝑟𝑟. 

By applying similar triangles, the following 
equation can be derived as shown in equation (6). 
𝐵𝐵
𝑍𝑍

= 𝐵𝐵−(𝑥𝑥𝑙𝑙−𝑥𝑥𝑟𝑟)
𝑍𝑍−𝑓𝑓

 (6) 

The term 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟  is known as disparity. Let 𝑑𝑑 =
𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑟𝑟  and the equation can be rewritten as 
equation (7). 
𝐵𝐵
𝑍𝑍

= 𝐵𝐵−𝑑𝑑
𝑍𝑍−𝑓𝑓

→ 𝑍𝑍 = 𝑓𝑓×𝐵𝐵
𝑑𝑑

  (7) 

In equation (7), 𝑓𝑓 and 𝐵𝐵 are fixed values, the only 
unknown parameter is 𝑑𝑑. For this reason, it is necessary 

to determine disparity in order to calculate the distance 
between the obstacle and the camera. 

B. Semi-global block matching algorithm 

The recovery of three-dimensional structure from 
two-dimensional images is a fundamental objective in 
computer vision. Among the various techniques 
developed to achieve this, binocular stereo vision 
stands as one of the most established and powerful. It 
mimics the human visual system's ability to perceive 
depth by finding and analyzing the differences between 
two images of the same scene captured from slightly 
different viewpoints. The output of this process, a dense 
disparity map, provides a rich, per-pixel representation 
of the scene's geometry, enabling a wide range of 
applications from autonomous navigation to 
photogrammetric mapping. 

 
 

Figure 2. Epipolar geometry: general case [9]. 
 
 

 
 

Figure 3. Stereo triangulation scheme [9]. 
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By the early 2000s, the field of stereo vision was 
largely defined by this stark trade-off: the speed of local 
methods came at the cost of accuracy, while the 
accuracy of global methods came at the cost of 
feasibility [23]. This polarization created a significant 
barrier to the deployment of high-quality, dense stereo 
vision in practical, resource-constrained systems, such 
as mobile robots and autonomous vehicles, which 
demand both high accuracy and real-time performance. 
The theoretical optimality of global methods proved to 
be a dead end for applications where low latency was 
essential. 

This gap in the algorithmic landscape created a clear 
need for a new approach-one that could bridge the 
divide by combining the strengths of both paradigms. 
The goal was to develop an algorithm capable of 
achieving accuracy close to that of global methods but 
with computational demands similar to those of local 
methods. 

In 2005, Hirschmüller introduced semi-global 
block matching (SGBM), a novel technique that 
provided an elegant and practical solution to this long-
standing problem. The central idea behind SGBM was 
to avoid solving the NP-hard 2D global optimization 
problem directly [24]. Instead, SGBM approximates the 
minimization of the 2D global energy function by 
aggregating the results of multiple independent, one-
dimensional optimizations. 

Each of these 1D optimizations is performed along 
a path through the image and can be solved efficiently 
using dynamic programming. By combining the costs 
from multiple paths passing through each pixel from 
different directions (e.g., horizontal, vertical, and 
diagonals), SGBM effectively incorporates a global-like 
smoothness constraint without incurring the 
prohibitive computational cost of a true 2D 
optimization [25]. This clever approximation allowed 
SGBM to achieve an excellent balance between 
accuracy and efficiency, delivering high-quality, dense 
disparity maps with sharp object boundaries at 
runtimes suitable for practical applications [25]. 
SGBM's success was not merely an incremental 
improvement; it represented a new way of thinking 
about computationally hard problems in vision. It 
demonstrated that a tractable approximation of a 
theoretically optimal model could outperform existing 
practical methods. This established a powerful design 
pattern and cemented SGBM's status as a foundational 
"classical" algorithm, leading to its widespread 
implementation in popular libraries such as OpenCV 
and on dedicated hardware such as field-
programmable gate array (FPGAs) [24]. 

To fully appreciate the behavior and capabilities of 
the Semi-Global Matching algorithm, it is essential to 

first understand the mathematical objective it seeks to 
achieve. At its core, SGBM is an energy minimization 
framework. It aims to find a disparity image 𝐷𝐷  that 
minimizes a global energy function 𝐸𝐸(𝐷𝐷) , which is 
carefully designed to balance the visual evidence from 
the images with prior knowledge about the geometric 
structure of the world. 

The global energy function 𝐸𝐸(𝐷𝐷) assigns a total cost 
to a candidate disparity map 𝐷𝐷.  A lower energy 
corresponds to a more plausible disparity map. The 
function is defined as a sum over all pixels 𝑝𝑝  in the 
image and is composed of two fundamental terms: a 
data term and a smoothness term. In its general form, 
it can be written as equation (8). 

𝐸𝐸(𝐷𝐷) = ∑ (𝐶𝐶�𝑝𝑝,𝐷𝐷𝑝𝑝� + ∑ 𝑉𝑉(𝐷𝐷𝑝𝑝,𝐷𝐷𝑞𝑞)𝑞𝑞∈𝑁𝑁𝑝𝑝 )𝑝𝑝  (8) 

where 𝑝𝑝 and 𝑞𝑞 are pixels, 𝐷𝐷𝑝𝑝 is the disparity assigned to 
pixel 𝑝𝑝, 𝐶𝐶(𝑝𝑝,𝐷𝐷𝑝𝑝) is the matching cost (the data term) 
for pixel 𝑝𝑝  at disparity 𝐷𝐷𝐷𝐷 , 𝑁𝑁𝑁𝑁  represents the set of 
neighboring pixels of 𝑝𝑝 , and 𝑉𝑉(𝐷𝐷𝑝𝑝,𝐷𝐷𝑞𝑞)  is a penalty 
function (the smoothness term) that penalizes 
differences in disparity between neighboring pixels 
𝑝𝑝 and 𝑞𝑞. 

C. Experimental setup and evaluation metrics 

This research follows the design science research 
methodology framework, which provides a structured 
approach for developing and evaluating technological 
artifacts [26]. The experiments were conducted using 
the CARLA simulator version 0.9.15, configured with 
specifications as follows: environment - Town10HD; 
weather - middle of the day; camera setup - setup pair 
with 20 cm baseline. The camera parameters were 
configured as follows: baseline distance of 0.2 meters, 
field of view of 90°, and image resolution of 
640 × 480 pixels. Test scenarios were designed to 
evaluate the algorithm’s performance under different 
vehicle orientations, with the front wheel heading set 
toward east, north, south, and west relative to the 
horizon. The evaluated distance range was 40-350 cm. 

To assess the algorithm’s accuracy, several 
evaluation metrics were employed, including relative 
error, absolute error, and root mean square error 
(RMSE). These metrics were computed for each test 
scenario within the simulated environment. The 
finding from this evaluation serves as a validation of the 
algorithm’s effectiveness. 

D. Distance estimation model 

A distance estimation system based on the SGBM 
algorithm was developed and implemented on a 
personal computer running Windows 10, equipped 
with an Intel Core i9 CPU and 64 GB of RAM, and 
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programmed in Python. The stereo vision system 
consists of two identical RGB cameras with a 90° field 
of view, both provided within the CARLA simulator 
environment. 

Camera calibration was performed using a 10x7 
chessboard pattern. The chessboard was rotated and 
positioned to ensure that most of the camera's field of 
view was captured in the collected images. To achieve 
reliable calibration, at least ten images of the 
chessboard were required; however, thirty-five images 
were collected from various orientations to enhance 
precision. The flowchart of the distance estimation 
model is illustrated in Figure 4, which can be divided 
into four primary stages. 

The first step of the process is a stereo calibration. 
In this stage, each camera was calibrated individually by 
detecting the corners of the chessboard across 
35 images. A sub-pixel corner detection method was 
employed to achieve high precision in corner 
localization. Subsequently, stereo calibration was 

performed, producing two 3x4 projection matrices that 
define the camera in a unified coordinate system. 

The second step is stereo rectification. Stereo 
rectification aligns the left and right images such that 
corresponding epipolar lines are parallel and 
horizontally aligned. This process reprojects both 
camera images onto a common image plane, 
simplifying the stereo matching task and improving 
accuracy. The rectified image pair is then used to 
compute the disparity map in the next stage. 

The third step is stereo matching. Stereo matching 
determines depth information from two or more 
images of the same scene captured from slightly 
different viewpoints, similar to how humans’ vision 
processes depth using both eyes. The depth 
information received is the disparity (horizontal 
displacement) between points in the left and right 
images. A commonly used algorithm for stereo 
matching is semi-global matching [27]. The result of 
stereo matching is a disparity map that we can use in 
the distance calculation stage.  

 
 

Figure 4. Flowchart of the proposed distance estimation model. 
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The final step is distance calculation using the 
disparity map obtained from the stereo matching 
process. The distance is calculated by converting the 
disparity value at a known distance using a sixth-order 
polynomial equation. 

III. Results and Discussions 

Table 1 presents the relationship between disparity 
values calculated by the stereo vision model and the 
corresponding measured distances. Using regression 

analysis, polynomial functions were derived to estimate 
distance. The polynomial function’s values of the 3rd, 5th, 
and 6th orders are shown in Figure 5. 

Based on the polynomial order graph in Figure 5, 
the sixth-order polynomial regression was selected 
because it achieved the lowest root mean square error 
(RMSE) among all tested regression orders, indicating 
the most accurate approximation of the distance–
response relationship. RMSE is widely regarded as a 
reliable indicator of predictive precision in continuous-
value estimation tasks [28][29]. Although higher-order 

Table 1. 
Relationship between disparity value and the measured actual distance. 

Actual distance  
(cm) 

Average disparity  
(px) 

Standard deviation Actual distance 
(cm) 

Average disparity 
(px) 

Standard Deviation  

40 0.03414807 0.00016342 200 -0.00886305 0.00002387 

50 0.02522009 0.00008927 210 -0.00960398 0.00006535 

60 0.01871172 0.00011413 220 -0.01030389 0.00003941 

70 0.01368315 0.00006651 230 -0.01080968 0.00002228 

80 0.00972427 0.00013637 240 -0.01129703 0.00002448 

90 0.00651247 0.00010491 250 -0.01174746 0.00004608 

100 0.00390147 0.00006211 260 -0.01221156 0.00003463 

110 0.00162538 0.00009788 270 -0.01271941 0.00007586 

120 -0.00019958 0.00006599 280 -0.01303792 0.00010301 

130 -0.00186666 0.00003692 290 -0.01333935 0.00004478 

140 -0.00335124 0.00003257 300 -0.01374809 0.00002084 

150 -0.00447971 0.00004670 310 -0.01398526 0.00014081 

160 -0.00556786 0.00005146 320 -0.01422654 0.00003387 

170 -0.00646120 0.00004825 330 -0.01450541 0.00007780 

180 -0.00738394 0.00000985 340 -0.01473029 0.00001716 

190 -0.00832923 0.00005771 350 -0.01504812 0.00013390 

 

 
 

Figure 5. Polynomial graph of 3rd, 5th, and 6th. 

y = -8E+06x3 + 405402x2 - 6816.6x + 109.43
R² = 0.9901

y = -1E+10x5 + 8E+08x4 - 2E+07x3 + 199429x2 - 5062.1x + 119.83
R² = 0.9994

y = 6E+11x6 - 4E+10x5 + 8E+08x4 - 7E+06x3 + 179584x2 - 5764.3x + 119.89
R² = 0.9998
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polynomials may introduce unnecessary complexity or 
oscillatory behavior, an examination of the residual 
distribution and cross-validated performance 
confirmed that the sixth-order model provided 
improved accuracy without evidence of overfitting. 
This decision is consistent with recent findings in the 
literature, where modern studies emphasize 
minimizing prediction error while applying 
appropriate regularization or model-selection criteria. 
Zhao et al. [30] demonstrated the importance of basis-

function selection and cross-validation for achieving 
optimal polynomial response surfaces, while Zhang 
et al. [31] showed that information-driven fitting 
methods—evaluated using RMSE and information 
criteria—yield improved accuracy and stability in 
sensor-related regression tasks. 

Table 2 presents the experiment results comparing 
the estimated distances produced by the model with the 
actual distances. The actual distance is based on the 
coordinates in CARLA. Figure 6 presents that every 

Table 2. 
The relationship between the estimated and measured distance. 

Actual distance 
(cm) 

Estimated 
distance 

(cm) 

Absolute 
error (cm) 

Relative error 
(%) 

Actual 
distance (cm) 

Estimated distance 
(cm) 

Absolute 
error (cm) 

Relative 
error (%) 

40 35.922 4.078 10.195 200 198.484 1.516 0.758 

50 46.362 3.638 7.276 210 210.436 0.436 0.208 

60 61.298 1.298 2.163 220 220.634 0.634 0.288 

70 69.332 0.668 0.954 230 230.076 0.076 0.033 

80 78.296 1.704 2.130 240 239.702 0.298 0.124 

90 89.376 0.624 0.693 250 249.674 0.326 0.130 

100 99.824 0.176 0.176 260 261.788 1.788 0.688 

110 110.432 0.432 0.393 270 270.46 0.46 0.170 

120 120.586 0.586 0.488 280 279.266 0.734 0.262 

130 131.024 1.024 0.788 290 290.714 0.714 0.246 

140 141.620 1.62 1.157 300 304.158 4.158 1.386 

150 150.268 0.268 0.179 310 308.974 1.026 0.331 

160 160.142 0.142 0.089 320 319.574 0.426 0.133 

170 168.924 1.076 0.633 330 330.018 0.018 0.005 

180 178.292 1.708 0.949 340 338.48 1.52 0.447 

190 188.608 1.392 0.733 350 354.25 4.25 1.214 
 
 

 
 

Figure 6. Ilustration of promenade and the simulator environment configuration. 
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1 unit of coordinate (𝑥𝑥, 𝑦𝑦 and 𝑧𝑧) is 1 meter in distance. 
The coordinate was declared by code, as a part of 
CARLA’s simulator environment configuration. Based 
on the data, the RMSE was calculated to be 1.69 cm and 
the average relative error is below 1.1 % in the distance 
range of 60 cm - 350 cm. This performance is 
comparable to results reported in state-of-the-art 
studies in this field, which generally record relative 
errors ranging from 0.1 % to 2.2 % [22]. The strong 
performance of the proposed model is also attributed to 
the precise stereo calibration process, which achieved 
an RMSE below 0.5 pixels, a commonly accepted 
threshold for high-quality calibration. 

For distances below 80 cm, the distance estimation 
model demonstrates high inaccuracy, as illustrated in 
Figure 7. The experimental result shows a large relative 
error exceeding 10 % at the closest point, indicating 
that the model is unreliable for short-range distance 
estimation. Once the actual distance surpasses 
approximately 80-100 cm, the model's performance 
improves significantly. The relative error stabilizes and 
remains consistently low, generally fluctuating within a 
narrow range between 0 % and 2 %. This range 
represents the model’s optimal operating region, where 
it provides the most reliable and accurate estimations.  

IV. Conclusion 

This research evaluated the SGBM algorithm for 
distance estimation in an autonomous parking 
application using the CARLA simulator. The 
experiment results demonstrate the effectiveness of the 
proposed distance estimation model, achieving an 
overall RMSE of 1.69 cm and an average relative error 
of 1.1 % across the critical distance range of 40-350 cm. 
Future research directions include extending the 
evaluation to additional environmental conditions, 
investigating the integration of machine learning 
techniques for further accuracy improvements, and 

conducting real-world validation. Additionally, 
exploration of multimodal sensor fusion combining 
stereo vision with other sensing modalities could 
provide enhanced robustness and accuracy for 
autonomous parking applications. 
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