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Abstract

This paper presents an evaluation of stereo vision based on the semi-global block matching (SGBM) algorithm for distance

estimation in an autonomous parking scenario using the CARLA simulator. Distance-disparity regression functions are explored

to enhance distance estimation accuracy. The proposed distance estimation model was evaluated using the design science

research methodology (DSRM) framework, with experimental validation conducted in CARLA’s promenade environment. The

evaluation employed root mean square error (RMSE) and relative error metrics to assess performance. Experiments were

performed within a range of 40-350 cm, which is relevant for autonomous parking applications. The experimental results show

that the algorithm achieves an overall RMSE of 1.69 cm and an average relative error of 1.1 %. The findings contribute to the

advancement of perception systems for autonomous vehicles, particularly in challenging environments.
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I. Introduction

The rapid advancement of autonomous vehicle
technology has intensified the demand for robust and
accurate perception systems capable of operating under
diverse environmental conditions. Among the various
sensing modalities employed in autonomous vehicles,
stereo vision systems offer significant advantages,
including cost-effectiveness [1], passive operation [2],
and rich environmental information extraction [3].
Distance measurement using stereo vision has become
a critical component in autonomous parking systems,
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where precise spatial awareness is essential for safe
vehicle maneuvering in confined spaces.

Traditional distance measurement techniques in
automotive applications rely heavily on active sensors
such as light detection and ranging (LiDAR) [4], radio
detection and ranging (RADAR) [5], and ultrasonic
sensors [6][7]. While these sensors provide accurate
distance measurements, they are often expensive and
may face limitations under certain environmental
conditions [8]. Stereo vision systems, inspired by
human binocular vision, offer a compelling alternative
by utilizing two or more cameras to estimate depth
information through triangulation principles [9].
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The accuracy of results obtained using stereo vision
technology is highly dependent on the algorithm
employed to process the acquired images [10]. The
semi-global block matching (SGBM) algorithm
represents a significant advancement in stereo vision
technology, addressing many of the limitations of
traditional block matching approaches. Unlike local
methods that consider only small neighborhoods,
SGBM incorporates global optimization techniques
while maintaining computational efficiency suitable for
real-time applications [11]. This capability makes
SGBM particularly attractive for autonomous parking
systems where both accuracy and processing speed are
critical requirements.

Furthermore, to ensure the robustness of such
algorithms before real-world deployment, simulation
environments have become indispensable tools for
development and validation. The car learning to act
CARLA simulator provides a comprehensive platform
for testing autonomous driving algorithms in
controlled yet realistic environments [12]. CARLA’s
ability to simulate various weather conditions, lighting
scenarios, and urban environments makes it an ideal
testbed for evaluating stereo vision algorithms under
diverse conditions, thereby accelerating the design and
validation process for autonomous vehicle perception
systems.

Several articles have reported implementation of
the SGBM algorithm, including vehicle speed
measurement [13], pavement pothole detection [14],
and obstacle detection in autonomous vehicle
navigation [15][16]. However, no study has reported its
adaptation in the CARLA simulator environment. The
CARLA simulator features a promenade environment
that provides unique challenges for autonomous
vehicle perception systems due to factors such as
varying lighting conditions, reflective surfaces, and
atmospheric effects. Object detection and tracking may
struggle under these conditions, necessitating
algorithm enhancements and thorough evaluation [17].

This research addresses the critical need for reliable
distance measurement systems in autonomous parking
applications by proposing an enhanced SGBM
algorithm specifically optimized for promenade
environments. The primary contributions of this work
include: (1) the development of an improved SGBM
algorithm with enhanced accuracy for distance
measurement, (2) comprehensive evaluation using
multiple accuracy metrics in the CARLA simulator
environment, and (3) validation of the proposed
system’s suitability for autonomous parking perception
systems in the critical distance range of 40-350 cm.

II. Materials and Methods

A. Stereo vision fundamental

A stereo vision system operates on the principle of
triangulation, utilizing the geometric relationship
between corresponding points in multiple camera
views to estimate depth information [18]. The
fundamental mathematical model for stereo vision is
based on the pinhole camera model and epipolar
geometry principles.

1) Camera model

A 3D object can be projected onto a 2D image using
a camera model, most often the pinhole camera. In this
model, a point Q in 3D space is converted into a 2D
point q on the image plane by the intersection of the
line connecting C (camera center) and Q, with the
image plane.

In reality, the image is formed behind the camera
center. However, for ease of calculation, the positions
of the image and the camera center are swapped. The
distance of the object from the camera is Z, the object's
actual length is X, its image length is x, and the focal
length is f. The image length x can be derived using the
concept of similar triangles, as shown in equation (1).

x=f7 (1)

The world coordinate system (U, V, W) and camera
coordinate system (X, Y, Z) are used to locate object
position in 3D space. The forward projection is
illustrated in Figure 1. A 3D point in space has the
coordinates (X, Y, Z). A 2D point q is the projection of
point Q and is located at (x, y). Using Thales’ theorem,
the equation that relates the world point to the
corresponding image point is expressed in equation (2).

x=f7andy=f; @

As these equations are non-linear, homogeneous
coordinates are employed for their solution. A 2D point
is determined using the coordinates (x,y,Z) as shown
in equation (3).

x=2andy=2 (3)

In Figure 1, the projection matrix My jection i
depicted, with f representing the focal length. The
extrinsic parameters are contained within Meysrinsicss
which include a 3x3 rotation matrix R and a 3xl
translation vector T. These parameters determine the
camera's orientation and position relative to the world
frame and may vary depending on the specific world.

The matrix M ffn, is utilized to transform (x, y) to
(u, v), pixel coordinates. This transformation considers
two factors: the scale factor and the shift of the principal
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Figure 1. Forward projection [5].

point toward the upper-left corner. The intrinsic
parameters are unique to each camera and are
contained within the matrix K. These parameters
facilitate the
coordinates and the pixel coordinates within the image

conversion between the camera

frame. A displacement of the center of the image plane

is denoted by (px, py)T, while the product of the
physical focal length and s, gives f, and f,, is derived
from the product of the physical focal length and s,, of
the pixel.

2) Lens distortion

In practical application, no lens is perfectly free
from distortion. The primary types of lens distortions,
which include radial and tangential distortion, are
detailed and modeled by Brown [19] and Fryer and
Brown [20]. Radial distortion results from the inherent
curvature of the lens, whereas tangential distortion
arises from imperfections in the camera’s assembly or
alignment. The initial position of the distorted point is
(x, ), and its radial location is determined using
equation (4).

(xcw) _ (x(1+k1r2+k2r4+k3r6)) 4)
Yeor) — \y(A+kq r2+kyrt+ksr6)

where (X o, Ycor) denotes the new position obtained
after distortion. The tangential distortion is represented
by two parameters p, and p, as shown in equation (5).

() = (x+(2p1xy+pz(r2+2x2)>) 5)
Ycor y+(p1(r2+2y2)+2p,xy)

OpenCV was used to fix lens distortion as a part of
image processing. OpenCV is an open sources image

processing library [21]. OpenCV packages all the five
distortion coefficients to forma 1 X 5 distortion vector
in the following order: k4, k;, k3, p1, and p,.

3) Stereo geometry and disparity

A basic setup with two cameras to capture an image
of the same 3D point Q is shown in Figure 2. The stereo
geometry is based on epipolar geometry. The QC,C,
plane is called the epipolar plane where the point Q is
projected into the left and right image planes [22].
These projections are referred to as g; (left) and g,
(right).

All points along the (C;Q) form aline, (e,q,.), on the
right image plane. This line is called the epipolar line
associated with the g; point. It is essential to note that
the corresponding point of g; on the right image plane
must lie along this line. In simpler terms, one only
needs to search along the epipolar line to the
corresponding point, rather than searching the entire
image. This concept is known as the epipolar constraint.
Similarly, every point possesses its corresponding
epipolar line in the opposite image.

C; and C, represent the left and right camera
centers, respectively. As per the configuration depicted
in Figure 2, the projection of C, onto the left image
plane is e;, which is called the left epipole. In an
analogous manner, e, is the right epipole. These
epipoles are the points where the image planes intersect
with the baseline C,C,.

Through the stereo rectification process, acquired
images are used to generate the disparity map. As
illustrated in Figure 3, the distance separating the
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Figure 3. Stereo triangulation scheme [9].

centers of the left and right cameras is denoted as B.
The coordinates g;(x;, y;) for the projection of Q onto
the left image plane and g, (x,,y,) for the projection
onto the right image plane are defined accordingly [22].
The variable Z signifies the distance from Q to the
camera. After the stereo rectification, the y coordinates
share common values, i.e., y = y; = y,.

By applying similar triangles, the following
equation can be derived as shown in equation (6).
B _ B—(xj—xy)

z zZ-f

(6)

The term x; — x, is known as disparity. Let d =
x; —x, and the equation can be rewritten as
equation (7).

fXB

d

B—-d
— 7 =

= )

In equation (7), f and B are fixed values, the only
unknown parameter is d. For this reason, it is necessary

to determine disparity in order to calculate the distance
between the obstacle and the camera.

B. Semi-global block matching algorithm

The recovery of three-dimensional structure from
two-dimensional images is a fundamental objective in
computer vision. Among the various techniques
developed to achieve this, binocular stereo vision
stands as one of the most established and powerful. It
mimics the human visual system's ability to perceive
depth by finding and analyzing the differences between
two images of the same scene captured from slightly
different viewpoints. The output of this process, a dense
disparity map, provides a rich, per-pixel representation
of the scene's geometry, enabling a wide range of
from autonomous to

applications navigation

photogrammetric mapping.
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By the early 2000s, the field of stereo vision was
largely defined by this stark trade-off: the speed of local
methods came at the cost of accuracy, while the
accuracy of global methods came at the cost of
feasibility [23]. This polarization created a significant
barrier to the deployment of high-quality, dense stereo
vision in practical, resource-constrained systems, such
as mobile robots and autonomous vehicles, which

demand both high accuracy and real-time performance.

The theoretical optimality of global methods proved to
be a dead end for applications where low latency was
essential.

This gap in the algorithmic landscape created a clear
need for a new approach-one that could bridge the
divide by combining the strengths of both paradigms.
The goal was to develop an algorithm capable of
achieving accuracy close to that of global methods but
with computational demands similar to those of local
methods.

In 2005, Hirschmiiller introduced semi-global
block matching (SGBM), a novel technique that
provided an elegant and practical solution to this long-
standing problem. The central idea behind SGBM was
to avoid solving the NP-hard 2D global optimization
problem directly [24]. Instead, SGBM approximates the
minimization of the 2D global energy function by
aggregating the results of multiple independent, one-
dimensional optimizations.

Each of these 1D optimizations is performed along
a path through the image and can be solved efficiently
using dynamic programming. By combining the costs
from multiple paths passing through each pixel from
different directions (e.g., horizontal, vertical, and
diagonals), SGBM effectively incorporates a global-like
smoothness constraint without incurring the
prohibitive computational cost of a true 2D
optimization [25]. This clever approximation allowed
SGBM to achieve an excellent balance between
accuracy and efficiency, delivering high-quality, dense
disparity maps with sharp object boundaries at
runtimes suitable for practical applications [25].
SGBM's success was not merely an incremental
improvement; it represented a new way of thinking
about computationally hard problems in vision. It
demonstrated that a tractable approximation of a
theoretically optimal model could outperform existing
practical methods. This established a powerful design
pattern and cemented SGBM's status as a foundational
"classical" algorithm, leading to its widespread
implementation in popular libraries such as OpenCV
and on dedicated hardware such as field-
programmable gate array (FPGAs) [24].

To fully appreciate the behavior and capabilities of
the Semi-Global Matching algorithm, it is essential to

first understand the mathematical objective it seeks to
achieve. At its core, SGBM is an energy minimization
framework. It aims to find a disparity image D that
minimizes a global energy function E (D), which is
carefully designed to balance the visual evidence from
the images with prior knowledge about the geometric
structure of the world.

The global energy function E (D) assigns a total cost
to a candidate disparity map D. A lower energy
corresponds to a more plausible disparity map. The
function is defined as a sum over all pixels p in the
image and is composed of two fundamental terms: a
data term and a smoothness term. In its general form,
it can be written as equation (8).

E(D) = Zp(C(p, Dp) + ZqENp V(Dp' Dq)) (8)

where p and q are pixels, D,, is the disparity assigned to
pixel p, C(p, Dp) is the matching cost (the data term)
for pixel p at disparity Dp, Np represents the set of
neighboring pixels of p, and V(D,,D,) is a penalty
function (the smoothness term) that penalizes
differences in disparity between neighboring pixels
p and q.

C. Experimental setup and evaluation metrics

This research follows the design science research
methodology framework, which provides a structured
approach for developing and evaluating technological
artifacts [26]. The experiments were conducted using
the CARLA simulator version 0.9.15, configured with
specifications as follows: environment - Townl10HD;
weather - middle of the day; camera setup - setup pair
with 20 cm baseline. The camera parameters were
configured as follows: baseline distance of 0.2 meters,
field of view of 90°, and image resolution of
640 X 480 pixels. Test scenarios were designed to
evaluate the algorithm’s performance under different
vehicle orientations, with the front wheel heading set
toward east, north, south, and west relative to the
horizon. The evaluated distance range was 40-350 cm.

To assess the algorithm’s accuracy, several
evaluation metrics were employed, including relative
error, absolute error, and root mean square error
(RMSE). These metrics were computed for each test
scenario within the simulated environment. The
finding from this evaluation serves as a validation of the
algorithm’s effectiveness.

D. Distance estimation model

A distance estimation system based on the SGBM
algorithm was developed and implemented on a
personal computer running Windows 10, equipped
with an Intel Core i9 CPU and 64 GB of RAM, and
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Figure 4. Flowchart of the proposed distance estimation model.

programmed in Python. The stereo vision system
consists of two identical RGB cameras with a 90° field
of view, both provided within the CARLA simulator
environment.

Camera calibration was performed using a 10x7
chessboard pattern. The chessboard was rotated and
positioned to ensure that most of the camera's field of
view was captured in the collected images. To achieve
reliable calibration, at least ten images of the
chessboard were required; however, thirty-five images
were collected from various orientations to enhance
precision. The flowchart of the distance estimation
model is illustrated in Figure 4, which can be divided
into four primary stages.

The first step of the process is a stereo calibration.
In this stage, each camera was calibrated individually by
detecting the corners of the chessboard across
35 images. A sub-pixel corner detection method was
employed to achieve high precision in corner
localization. Subsequently, stereo calibration was

performed, producing two 3x4 projection matrices that
define the camera in a unified coordinate system.

The second step is stereo rectification. Stereo
rectification aligns the left and right images such that
corresponding epipolar lines are parallel and
horizontally aligned. This process reprojects both
camera images onto a common image plane,
simplifying the stereo matching task and improving
accuracy. The rectified image pair is then used to
compute the disparity map in the next stage.

The third step is stereo matching. Stereo matching
determines depth information from two or more
images of the same scene captured from slightly
different viewpoints, similar to how humans’ vision
processes depth using both eyes. The depth
information received is the disparity (horizontal
displacement) between points in the left and right
images. A commonly used algorithm for stereo
matching is semi-global matching [27]. The result of
stereo matching is a disparity map that we can use in
the distance calculation stage.
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The final step is distance calculation using the
disparity map obtained from the stereo matching
process. The distance is calculated by converting the
disparity value at a known distance using a sixth-order
polynomial equation.

II1. Results and Discussions

Table 1 presents the relationship between disparity
values calculated by the stereo vision model and the
corresponding measured distances. Using regression

Table 1.
Relationship between disparity value and the measured actual distance.

analysis, polynomial functions were derived to estimate
distance. The polynomial function’s values of the 3, 5%,
and 6" orders are shown in Figure 5.

Based on the polynomial order graph in Figure 5,
the sixth-order polynomial regression was selected
because it achieved the lowest root mean square error
(RMSE) among all tested regression orders, indicating
the most accurate approximation of the distance-
response relationship. RMSE is widely regarded as a
reliable indicator of predictive precision in continuous-
value estimation tasks [28][29]. Although higher-order

Actual distance Average disparity Standard deviation Actual distance Average disparity Standard Deviation

(cm) (px) (cm) (px)

40 0.03414807 0.00016342 200 -0.00886305 0.00002387

50 0.02522009 0.00008927 210 -0.00960398 0.00006535

60 0.01871172 0.00011413 220 -0.01030389 0.00003941

70 0.01368315 0.00006651 230 -0.01080968 0.00002228

80 0.00972427 0.00013637 240 -0.01129703 0.00002448

90 0.00651247 0.00010491 250 -0.01174746 0.00004608
100 0.00390147 0.00006211 260 -0.01221156 0.00003463
110 0.00162538 0.00009788 270 -0.01271941 0.00007586
120 -0.00019958 0.00006599 280 -0.01303792 0.00010301
130 -0.00186666 0.00003692 290 -0.01333935 0.00004478
140 -0.00335124 0.00003257 300 -0.01374809 0.00002084
150 -0.00447971 0.00004670 310 -0.01398526 0.00014081
160 -0.00556786 0.00005146 320 -0.01422654 0.00003387
170 -0.00646120 0.00004825 330 -0.01450541 0.00007780
180 -0.00738394 0.00000985 340 -0.01473029 0.00001716
190 -0.00832923 0.00005771 350 -0.01504812 0.00013390

400
350

300
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Figure 5. Polynomial graph of 3, 5%, and 6™.
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Table 2.
The relationship between the estimated and measured distance.
Actual distance  Estimated  Absolute Relative error Actual Estimated distance Absolute Relative
(cm) distance  error (cm) (%) distance (cm) (cm) error (cm) error (%)
(cm)
40 35.922 4.078 10.195 200 198.484 1.516 0.758
50 46.362 3.638 7.276 210 210.436 0.436 0.208
60 61.298 1.298 2.163 220 220.634 0.634 0.288
70 69.332 0.668 0.954 230 230.076 0.076 0.033
80 78.296 1.704 2.130 240 239.702 0.298 0.124
90 89.376 0.624 0.693 250 249.674 0.326 0.130
100 99.824 0.176 0.176 260 261.788 1.788 0.688
110 110.432 0.432 0.393 270 270.46 0.46 0.170
120 120.586 0.586 0.488 280 279.266 0.734 0.262
130 131.024 1.024 0.788 290 290.714 0.714 0.246
140 141.620 1.62 1.157 300 304.158 4.158 1.386
150 150.268 0.268 0.179 310 308.974 1.026 0.331
160 160.142 0.142 0.089 320 319.574 0.426 0.133
170 168.924 1.076 0.633 330 330.018 0.018 0.005
180 178.292 1.708 0.949 340 338.48 1.52 0.447
190 188.608 1.392 0.733 350 354.25 4.25 1.214

52 o < y

Figure 6. Ilustration of promenade and the simulator environment configuration.

polynomials may introduce unnecessary complexity or
oscillatory behavior, an examination of the residual
distribution  and  cross-validated  performance
confirmed that the sixth-order model provided
improved accuracy without evidence of overfitting.
This decision is consistent with recent findings in the
where modern  studies

literature, emphasize

applying
appropriate regularization or model-selection criteria.

minimizing prediction error while

Zhao et al. [30] demonstrated the importance of basis-

function selection and cross-validation for achieving
optimal polynomial response surfaces, while Zhang
etal. [31] showed that information-driven fitting
methods—evaluated using RMSE and information
criteria—yield improved accuracy and stability in
sensor-related regression tasks.

Table 2 presents the experiment results comparing
the estimated distances produced by the model with the
actual distances. The actual distance is based on the
coordinates in CARLA. Figure 6 presents that every
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1 unit of coordinate (x, y and z) is 1 meter in distance.
The coordinate was declared by code, as a part of
CARLA’s simulator environment configuration. Based
on the data, the RMSE was calculated to be 1.69 cm and
the average relative error is below 1.1 % in the distance
range of 60 cm - 350 cm. This performance is
comparable to results reported in state-of-the-art
studies in this field, which generally record relative
errors ranging from 0.1 % to 2.2 % [22]. The strong
performance of the proposed model is also attributed to
the precise stereo calibration process, which achieved
an RMSE below 0.5 pixels, a commonly accepted
threshold for high-quality calibration.

For distances below 80 cm, the distance estimation
model demonstrates high inaccuracy, as illustrated in
Figure 7. The experimental result shows a large relative
error exceeding 10 % at the closest point, indicating
that the model is unreliable for short-range distance
estimation. Once the actual distance surpasses
approximately 80-100 c¢m, the model's performance
improves significantly. The relative error stabilizes and
remains consistently low, generally fluctuating within a
narrow range between 0% and 2 %. This range
represents the model’s optimal operating region, where
it provides the most reliable and accurate estimations.

IV. Conclusion

This research evaluated the SGBM algorithm for
distance estimation in an autonomous parking
application wusing the CARLA
experiment results demonstrate the effectiveness of the

simulator. The

proposed distance estimation model, achieving an
overall RMSE of 1.69 cm and an average relative error
of 1.1 % across the critical distance range of 40-350 cm.
Future research directions include extending the
evaluation to additional environmental conditions,
investigating the integration of machine learning
techniques for further accuracy improvements, and

conducting real-world validation. Additionally,
exploration of multimodal sensor fusion combining
stereo vision with other sensing modalities could
provide enhanced robustness and accuracy for

autonomous parking applications.
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