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Abstract 

Personal mobility vehicles (PMVs) are gaining popularity for short urban trips, reducing car reliance and urban pollution. 
The development of autonomous PMVs heavily relies on accurate localization, often using the global positioning system (GPS) 
as a primary sensor. However, standard GPS suffers from poor accuracy, which requires data fusion with supplementary sensors 
to improve precision. This study presents a sensor fusion approach using low-cost, consumer-grade hardware to enhance the 
PMV localization. The fusion system integrates data from an inertial measurement unit (IMU) and wheel odometry with GPS, 
fusing them via Kalman Filter (KF) and Extended Kalman Filter (EKF) methods. A field experiment was conducted along a 67-
meter route at velocities ranging from 0.25 to 1.23 m/s. Comparative analysis has shown that the EKF method consistently 
outperforms the standard KF, improving positioning accuracy by approximately 29 % and reducing the maximum deviation to 
a range of 1.8 m to 2.7 m across different velocities. The results have confirmed the EKF as an effective and reliable strategy for 
achieving high-precision localization with affordable sensors, a key step towards scalable autonomous navigation for PMVs. 

 

Keywords: Extended Kalman Filter; sensor fusion; low-cost sensors; personal mobility vehicles; autonomous navigation; outdoor 
navigation; outdoor localization; localization accuracy. 

 
 

I. Introduction 
In recent years, there have been significant 

advancements in transportation technology, which 
have been driven by the need for mobility solutions that 
are more efficient, sustainable, and accessible. Personal 
mobility vehicles (PMVs), which include electric 
wheelchairs, scooters, and electric bikes, have gained 
more popularity recently as efficient, sustainable, and 
accessible transportation options for daily mobility and 
assisted living [1]. 

To further improve the functionality of these 
vehicles, one promising strategy is the integration of 
autonomous features. This integration aims to provide 
more convenient, efficient, and comfortable operation 
for the users. Autonomous PMVs can navigate through 
complex environments and avoid obstacles without 
continuous human intervention [2][3]. This capability 
depends on the precise and reliable navigation systems 
that can accurately determine the vehicle's position and 
orientation in real-time, a requirement that is 
particularly critical in varied outdoor environments [4]. 
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However, achieving reliable autonomy in cost-sensitive 
PMVs is primarily hindered by the limitations of 
affordable positioning systems, particularly in 
challenging urban environments. 

In outdoor navigation, the global positioning 
system (GPS) is commonly used as a primary sensor. 
However, its performance can be greatly affected by 
signal loss, multipath effects, and reduced accuracy in 
densely populated urban regions [5][6][7]. These 
limitations will create a significant challenge for safe 
autonomous operation, which requires an accurate 
representation of the environment and a reliable 
assessment of the vehicle's current state, a process 
known as localization. 

To address these challenges, sensor fusion methods 
are commonly used to combine data from multiple 
sources [8]. These methods leverage the 
complementary strengths of different sensors to 
mitigate the weaknesses of any individual one, 
providing more robust and accurate localization results 
[9]. Sensor fusion often involves augmenting GPS with 
additional sensors such as an odometer, which is 
known for its short-term accuracy and robust 
resistance to external interference, and an inertial 
measurement unit (IMU), which provides crucial data 
on acceleration and rotation. When these sensors are 
fused with GPS through an integrated navigation 
system (INS), the positional accuracy and reliability will 
be significantly enhanced [10]. 

In addition, other sensors such as light detection 
and ranging (LiDAR), radar, and magnetometers are 
also frequently integrated in navigation systems to 
create a more comprehensive perception of the 
environment [11][12]. The data fusion can be 
implemented at three levels, which are low-level (raw 
data), mid-level (feature), and high-level (decision-
making) [13]. The integrated data from these sensors 
will create a critical foundation for the vehicle's 
decision-making processes. 

Several methods have been designed in sensor 
fusion to improve the precision of the GPS-based 
localization system. Among these, the Extended 
Kalman filter (EKF) has been widely investigated for its 
effectiveness in combining various sensor data with the 
GPS localization system. For instance, the EKF method 
can enhance vehicle position estimation accuracy by 
predicting position and velocity data based on IMU and 
odometry inputs and subsequently updating this 
information using GPS data, thereby guaranteeing 
long-term accuracy [14][15][16]. 

The EKF offers several benefits, including the ability 
to precisely track the GPS data for position and velocity 
estimates, demonstrating its strong implementation 
potential [9][15][16]. Other advantages include its local 

stability, ease of implementation, and relatively low 
computational cost, making it suitable for real-time 
applications on constrained hardware [17]. The EKF 
works well for estimating nonlinear states [18], 
processing noisy measurements in dynamic systems in 
real-time [19] and estimating vehicle state parameters 
with high accuracy [20]. 

However, EKF’s performance is dependent on the 
quality of its models and sensors, where the use of low-
cost components can impact data reliability. In 
addition, incorrect system modeling or noise 
characteristics can also significantly reduce the EKF’s 
effectiveness. Although EKF-based sensor fusion is a 
well-established sensor fusion method in automotive 
and high-precision robotics applications, its 
implementation for low-cost PMVs introduces unique 
challenges. These challenges arise from the use of 
consumer-grade sensors and the distinctive dynamic 
profile characteristic of low-speed vehicles, an area that 
has received comparatively limited attention in existing 
literature. 

Several studies have utilized the low-cost global 
navigation satellite system (GNSS), IMU, odometry, 
and the sensor fusion has been conducted using a 
Kalman Filter-based method. However, the approach 
proposed in [21] was constrained by its limited 
applicability in the x and y dimensions; thus, it is found 
to be not compatible for hill terrains, and it also 
employs a basic EKF model without any dynamic noise 
adaptation [21]. Other studies employ GPS and IMU 
using the Unscented Kalman Filter (UKF) 
methodology, utilizing the KITTI dataset. However, 
this research exhibits significant computing complexity 
and is susceptible to error modelling [22]. Study in [23] 
offered an asynchronous integration of GPS, IMU, and 
controller area network (CAN) bus odometry using 
EKF, which effectively manages asynchronous data, but 
it is found to be less appropriate for real-time 
applications because of its processing demands and 
non-causal characteristics [23]. In the study of [24], the 
integration of GPS, IMU, and odometer with EKF 
demonstrates greater stability under GPS disturbances. 
Nonetheless, it still encounters cumulative errors upon 
the loss of previous GPS data and is constrained to basic 
test scenarios [24]. Therefore, this study investigates the 
implementation of an EKF-based sensor fusion system 
to enhance the outdoor navigation capabilities of cost-
effective PMV. By integrating data from consumer-
grade GPS, wheel odometry, and an IMU, the study 
aims to improve the accuracy and reliability of vehicle 
localization in challenging outdoor environments. 
Therefore, the main objective of this work is to design 
an advanced, yet accessible navigation technology that 
is both practical and applicable for real-life scenarios. 
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More specifically, the contributions of this study 
include:  

1. Design and development of a practical EKF-based 
fusion algorithm for cost-effective PMVs: the 
study presents a sensor fusion architecture based 
on the EKF, designed for cost-effective personal 
mobility vehicles (PMVs). This approach 
provides a practical and effective method to 
enhance the precision and reliability of outdoor 
navigation systems that would otherwise be 
compromised by low-cost GPS. 

2. Comprehensive experimental validation: the 
research includes extensive experimental 
validation in real-world outdoor settings. These 
experiments evaluate the system's performance, 
demonstrating not only its feasibility but also a 
significant improvement in localization accuracy 
and reliability. 

3. Enhancing accessibility through advanced 
affordable navigation technology: the research 
emphasizes cost-effective solutions by using 
consumer-grade GPS sensors with low-cost 
complementary sensors, making advanced 
navigation technologies more accessible for real-
world applications and commercial viability. 

The remainder of this paper is organized as follows: 
Section 1 reviews related research on sensor fusion 
methods, localization methods for autonomous 
systems, and the specific application of the EKF in 
robotics and autonomous vehicles. Section 2 details the 
materials and methods, encompassing the vehicle 
system, the integration of sensors (GPS, IMU, and 
wheel encoders), the experimental setup (including 
environments, PMV configuration, and data collection 
process), the design and implementation of the EKF-
based sensor fusion algorithm, and the evaluation 
criteria for the proposed system. Section 3 analyzes the 
experimental results, comparing the proposed method 

with baseline GPS localization methods and discussing 
improvements in accuracy. Finally, Section 4 
summarizes the key findings, highlights the importance 
of EKF-based sensor fusion in PMV navigation, and 
suggests potential pathways for future research. 

II. Materials and Methods 

A. Personal mobility vehicle 

A personal mobility vehicle (PMV) is a type of 
electric vehicle that is becoming increasingly popular 
[25]. These vehicles, powered by an electric motor, can 
reach velocities of about 2 m/s, which is comparable to 
the walking velocity of an average person [26][27]. 
PMVs are primarily used in urban settings or restricted 
areas for short-distance travel ranging from 0.8 to 3.2 
km, with the aim of minimizing car usage for short 
distances [25]. In many European cities, PMVs are 
more popular than bicycles. Figure 1 illustrates the 
categorization of PMVs according to their velocity. 
This study utilized a low-velocity PMV in its 
framework. 

B. SEATER: Single passenger electric 
autonomous transporter 

Introduced in 2023, the National Research and 
Innovation Agency (BRIN) developed the SEATER as a 
new type of PMV. The design allows it to operate 
autonomously in specific and controlled spaces like 
airports, theme parks, large office buildings, and similar 
indoor areas. Its purpose is to offer a safe and 
convenient mode of transportation within these 
environments. Although it is still in the development 
phase, SEATER has the potential to transform personal 
transportation, making urban areas more livable and 
sustainable in the future. 

 

Figure 1. PMVs categories (adopted from [28]). 
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Figure 2 illustrates components present on the 
SEATER, including features and sensors. Additionally, 
there is a joystick available for manual operation. 
Several sensors are present, including a camera, GPS, 
odometry, and IMU (positioned beneath the seat). 
There are two types of wheels: the rear wheels are 
differential wheel drives, and the front wheels are 
omnidirectional supporting wheels [29]. Table 1 
provides the specifications for the SEATER platform, a 
compact personal mobility vehicle that is ideal for 
confined spaces usage where agility is crucial, such as 
indoor environments or heavily crowded urban regions. 

C. Sensor integration 

The experiment platform incorporates GlobalSat 
BU-353N5 GPS, Adafruit BNO055 9-DOF IMU, and 

wheel odometry sensors that function as navigation 
sensors. The PMV mounts the GPS sensor on its arm, 
places the IMU under its seat, and places the wheel 
odometry on its rear wheels. The GPS sensor provides 
absolute position data used as the main reference for 
navigation. The IMU sensor provides orientation and 
motion data that help improve the vehicle’s position 
and orientation when the GPS signal is unavailable or 
disrupted, as well as detect changes in direction and 
velocity. Meanwhile, the wheel odometry sensor 
accurately measures the vehicle’s distance traveled and 
velocity. The GPS and IMU refine their position 
estimates using this data, particularly when the GPS 
data is inaccurate. All this sensor data is processed 
using the Kalman Filter and the Extended Kalman 
Filter method. 

D. Environmental setting 

Figure 3 shows the data collection site, which is 
located at KST Samaun Samadikun, BRIN, Bandung (-
6.8820317˚, 107.6114834˚). The yellow line illustrates 
the path followed by SEATER, starting at point A and 
ending at point B. The total track length is 
approximately 67 meters. 

E. Data collection procedure 

Figure 4 shows the data collection process and 
extraction for SEATER. In this study, the data 
collection process was repeated three times for each 
variation of velocity to verify the accuracy of the 
collected data and to facilitate cross-set comparisons. 
Additionally, it helps to observe the patterns of the data. 

 
Figure 2. The SEATER. 

Table 1. 
SEATER specification. 

Specification Description 

Type Autonomous personal mobility 
vehicle 

Driving type Electric drive; differential drive 

Dimension Approx. 120x75x110 cm 

Weight Approx. 50 kg 

Passenger 
capacity/maximum weight 

1 person/max 120 kg 

Max velocity 1.5 m/s or approx. 5 km/hour 

Max coverage distance Approx. 10 km 

Max operational duration 
(fully charged) 

Approx. 2 hours 

Operational mode Manual/autonomous 
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The data collection path was 67 meters long, and the 
SEATER moved at a constant velocity as 
predetermined, ensuring consistent data since the 
velocity variable did not change during data collection. 

Figure 4 illustrates the data collection procedure 
conducted across five different velocity levels, with each 
velocity level repeated three times to ensure data 
reliability. Data from the GPS, IMU, and odometry 

 
 

Figure 3. Path used for data collection. 
 

   
 

Figure 4. Data collection procedure. 
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sensors were collected at each velocity level and 
extracted into a CSV file for further analysis. Following 
data collection, Kalman Filter and Extended Kalman 
Filter methods were designed to fuse the localization 
data, and the localization accuracy achieved by each 
approach was analyzed. 

Table 2 displays the velocity variations and their 
corresponding velocity level. Three trials were 
conducted for each velocity level in the experiment to 
gather robust data. Table 3 presents the quantitative 
measure of the total data collected. The data obtained 
from the GPS sensor are captured at a frequency of 1 
Hz (one data point per second), while the IMU data 
were captured approximately 100 Hz (100 data points 
per second), and the odometry data were captured at 
over 200 Hz (more than 200 data points every second). 
The SEATER’s velocity influences the duration of each 
trial: higher velocity shortens travel time, resulting in 
less data collected, while lower velocity extends travel 
time, allowing for a greater volume of data to be 
collected. 

F. Evaluation criteria 

This study employs a metric-based approach to 
evaluate the enhancement in localization precision 
achieved by the Kalman Filter (KF) and Extended 
Kalman Filter (EKF) algorithms. The study compares 
the estimated vehicle positions from the KF and EKF 
against the raw GPS measurements. The primary 
objective is to quantify the reduction in positional error 
(deviation) offered by the filtered estimates, thereby 
assessing their effectiveness and optimization in 
improving GPS accuracy. 

The key metric for this assessment is the Euclidean 
distance between the estimated position from the filter 
(the best estimate of the true position) and the raw GPS 
measurement. This deviation, calculated for each data 
point, provides a direct measure of the filter's 
correction. A smaller deviation indicates a more 
significant correction and a higher improvement in 
accuracy. The overall performance is then evaluated by 
analyzing the statistical distribution (e.g., mean, 
maximum, standard deviation) of these errors across 
the entire dataset. 

Localization performance was assessed using a 
metric-based approach centered on lateral deviation 
(Dev), defined as the signed perpendicular distance 
from an estimated position to a straight-line reference 
path. Let the reference path be the line segment from 
the start point P0 = (𝑥𝑥0, 𝑦𝑦0) to the goal Pf = (𝑥𝑥𝑓𝑓, 𝑦𝑦𝑓𝑓) 

where 𝑥𝑥0 and 𝑦𝑦0 is the initial coordinate and 𝑥𝑥𝑓𝑓 and 𝑦𝑦𝑓𝑓 
is the final coordinate, respectively. The nominal path 
heading is defined in equation (1) as: 

Table 2. 
Variation of velocity level. 

Velocity Level Velocity  

Velocity 1 0.5 m/s 

Velocity 2 0.7 m/s 

Velocity 3 0.9 m/s 

Velocity 4 1 m/s 

Velocity 5 1.23 m/s 
 

Table 3. 
Data collection for each variation of velocity level. 

Velocity variation 
Number of data 

GPS IMU Odometry 

Velocity 1 Exp 1 137 13735 27471 

Exp 2 131 13090 26179 

Exp 3 135 13479 26954 

Velocity 2 Exp 1 95 9518 19019 

Exp 2 97 9655 19318 

Exp 3 94 9386 18775 

Velocity 3 Exp 1 70 7060 14592 

Exp 2 72 7214 14423 

Exp 3 73 7301 14592 

Velocity 4 Exp 1 63 6231 12460 

Exp 2 74 7364 14731 

Exp 3 61 6134 12265 

Velocity 5 Exp 1 53 5310 10621 

Exp 2 52 5237 10472 

Exp 3 54 5412 10814 
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𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎2(𝑦𝑦𝑓𝑓 − 𝑦𝑦0, 𝑥𝑥𝑓𝑓 − 𝑥𝑥0) (1) 

For any estimated position P = (𝑥𝑥,𝑦𝑦)  (from GPS, KF, 
or EKF), the expected 𝑦𝑦-coordinate on the reference 
path at the same 𝑥𝑥 -coordinate is defined as 
equation (2): 

𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎  = 𝑦𝑦0 + 𝑡𝑡𝑡𝑡𝑡𝑡(𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟)(𝑥𝑥 − 𝑥𝑥0) (2) 

and the instantaneous Dev is given as equation (3): 

Dev = 𝑦𝑦 − 𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎 (3) 

where smaller |𝐷𝐷𝐷𝐷𝐷𝐷| indicates closer adherence to the 
intended trajectory. For each trajectory {Devk}𝑘𝑘=1

𝑁𝑁 , it 
can be seen in equation (4) and equation (5) that: 

Max Dev = max
𝑘𝑘

|𝐷𝐷𝐷𝐷𝑣𝑣𝑘𝑘| (4) 

σDev = � 1

𝑁𝑁−1
∑ (Devk − 𝜇𝜇Dev)𝑁𝑁
𝑘𝑘=1  (5) 

Here, 𝜇𝜇Dev  reflects average signed bias, Max Dev 
captures worst-case lateral error, and σDev  is the 
Standard Dev indicating consistency/stability. 

G. Extended Kalman Filter architecture 

The Kalman Filter (KF) is a prediction/update 
method that generates optimal estimation on unknown 
variables by using a sequence of measurements 
recorded over time, which may contain statistical noise. 
Based on Bayesian probability, this method computes 

optimal estimates by utilizing Gaussian probability 
distributions and linear algebra [30]. 

In contrast, the Extended Kalman Filter (EKF) is 
utilized for nonlinear systems [21]. EKF manages 
nonlinearity by linearizing the system around the 
current estimate point, which is subsequently 
processed via the Kalman Filter [31]. Nonlinearity in a 
problem can manifest in two key areas: the process 
model employed for state prediction and the measures 
derived from the observation model.  

In the experiment, the variables used in the state 
vector are shown in equation (6), where xk is the state 
vector, x and y are the position from the GPS sensor, 𝜓𝜓 
is heading from IMU, v is velocity from odometry, and 
𝜓̇𝜓 is the yaw rate from IMU. 

𝑥𝑥𝑘𝑘 =  

⎣
⎢
⎢
⎢
⎢
⎡

 
𝑥𝑥
𝑦𝑦
𝜓𝜓
𝑣𝑣
𝜓̇𝜓 ⎦
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎡

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑋𝑋
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑌𝑌
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝑌𝑌𝑌𝑌𝑌𝑌 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ⎦

⎥
⎥
⎥
⎤

 (6) 

Figure 5 illustrates the Extended Kalman Filter cycle, 
highlighting the role of the Jacobian matrix, which 
represents the partial derivatives of the nonlinear 
function with respect to its variables. The Jacobian 
matrix is essential for linearizing the nonlinear model, 
allowing the filter to estimate the state of the nonlinear 
system. The Jacobian matrix is critical in EKF, as it 
helps to deal with the system's nonlinearity and 
measurements. By linearizing the model via the 

 
 

Figure 5. Extended Kalman Filter system [32]. 
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Jacobian matrix, EKF can work with nonlinear models 
and provide better estimates of the system's state. 

The EKF cycle starts with an initial state estimate 𝐱𝐱0 
and covariance 𝐏𝐏0. In the prediction phase, the current 
estimate is propagated through the nonlinear motion 
model 𝑔𝑔(⋅) . Since the model is nonlinear, it is then 
locally linearized with the state Jacobian, 𝐉𝐉𝐴𝐴 = 𝜕𝜕𝐠𝐠/𝜕𝜕𝐱𝐱. 
When a sensor reading arrives, the update phase is 
executed by comparing the measurement with the 
predicted measurement from the nonlinear sensor 
measurement model 𝐡𝐡(⋅),  linearized by the 
measurement Jacobian 𝐉𝐉𝐻𝐻 = 𝜕𝜕𝐡𝐡/𝜕𝜕𝐱𝐱. Kalman gain then 
balances trust between model and sensor to produce a 
corrected state and reduced covariance. The corrected 
pair becomes the starting point for the next cycle (and 
multiple updates can occur asynchronously within one 
time step). The complete EKF formulation is provided 
in equation (7) to equation (13). 
Prediction: 

𝐱𝐱𝑘𝑘 = 𝒈𝒈(𝐱𝐱𝑘𝑘−1,𝐮𝐮𝑘𝑘) (7) 

𝐏𝐏𝑘𝑘 = 𝐉𝐉𝐴𝐴 𝐏𝐏𝑘𝑘−1 𝐉𝐉𝐴𝐴𝑇𝑇 + 𝑸𝑸 (8) 

Update: 

𝐲𝐲�𝑘𝑘 = 𝐳𝐳𝒌𝒌 − 𝐡𝐡(𝐱𝐱𝑘𝑘) (9) 

𝐒𝐒𝑘𝑘 = 𝐉𝐉𝐻𝐻 𝐏𝐏𝑘𝑘  𝐉𝐉𝐻𝐻𝑇𝑇 + 𝐑𝐑 (10) 

𝐊𝐊𝑘𝑘 = 𝐏𝐏𝑘𝑘 𝐉𝐉𝐻𝐻𝑇𝑇  𝐒𝐒𝑘𝑘−1 (11) 

𝐱𝐱𝑘𝑘 = 𝐱𝐱𝑘𝑘 + 𝐊𝐊𝑘𝑘𝐲𝐲�𝑘𝑘  (12) 

𝐏𝐏𝑘𝑘 = (𝐈𝐈 − 𝐊𝐊𝑘𝑘𝐉𝐉𝐻𝐻)𝐏𝐏𝑘𝑘 (13) 

The process-noise covariance is denoted by Q 
(capturing unmodeled dynamics), and the 
measurement-noise covariance by R (capturing sensor 
uncertainty). 

H. Implementation setting of the EKF method 

The EKF extends the linear Kalman Filter to 
nonlinear systems by linearizing the process and 
measurement models around the current state estimate. 
The implementation assumes a planar (2D) motion 
model for a ground vehicle, estimating position, 
velocity, and heading on a flat surface. The algorithm 
operates through a continuous cycle of prediction and 
update steps, fusing asynchronous data from multiple 
sensors. The overall workflow of this iterative process is 
illustrated in Figure 6. 

As shown in Figure 6, the process begins with the 
initialization of the state vector and covariance matrix 
(𝐱𝐱0,𝐏𝐏0).  The algorithm then iterates through a 
prediction step, where the next state  (𝐱𝐱′)  and its 
covariance (𝐏𝐏′) are projected using the motion model, 
and an update step, where new sensor data is fused to 
correct the prediction. The Kalman Gain (𝐊𝐊)  is 
computed to optimally balance the weight given to the 
new measurements against the prior predictions. This 
gain is then used to update the state estimate (𝐱𝐱) , 
refining the position, velocity, and orientation 
estimates. The covariance estimate (𝐏𝐏) is also updated 
to reflect the reduced uncertainty. The cycle then 
repeats, ready for the next iteration. 

1) Process and measurement model definition 

The EKF operates on two fundamental models: the 
process model, which predicts the evolution of the state, 
and the measurement model, which predicts the sensor 
outputs based on the state. 

The discrete-time process model is defined as 
equation (14). 

𝐱𝐱𝑘𝑘 = 𝑓𝑓(𝐱𝐱𝑘𝑘−1,𝐮𝐮𝑘𝑘−1) + 𝐰𝐰𝑘𝑘−1 (14) 

 
 

Figure 6. EKF flowchart. The filter initializes (𝐱𝐱0,𝐏𝐏0) , predicts (𝐱𝐱′,𝐏𝐏′)  using the motion model and process noise 𝐐𝐐 , then updates on 
measurement arrival by computing the Kalman gain, correcting the state and covariance, and repeating. 
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where 𝐱𝐱𝑘𝑘  is the state vector at time step 𝑘𝑘, 𝑓𝑓(∙) is the 
nonlinear state transition function, 𝐮𝐮𝑘𝑘−1 is the control 
input, and 𝐰𝐰𝑘𝑘−1  is the process noise, assumed to be 
zero-mean Gaussian with covariance 𝐐𝐐. 

For the planar implementation, the state vector is 
simplified to 𝐱𝐱 = [𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝,𝜓𝜓, 𝑣𝑣,𝜓𝜓] T  (see equation 6) 
where (𝑝𝑝𝑝𝑝,𝑝𝑝𝑝𝑝) represent the 2D position in the world 
frame; 𝜓𝜓  is the vehicle's heading (yaw) angle; 𝑣𝑣 
represents the linear velocity (speed); and 𝜓̇𝜓 is the yaw 
rate. A constant turn rate and velocity (CTRV) model 
was employed. The control input 𝐮𝐮 is derived from the 
inertial measurement unit (IMU) gyroscope for yaw 
rate and wheel odometry for velocity. 

The measurement model is defined as equation (15). 

𝐳𝐳𝑘𝑘 = h(𝐱𝐱𝑘𝑘) + 𝐯𝐯𝑘𝑘 (15) 

where h(∙) maps the state to the expected measurement, 
and 𝐯𝐯𝑘𝑘 is the measurement noise with covariance 𝐑𝐑. 

A loosely coupled strategy was adopted for its 
simplicity and robustness. This approach fuses the 
navigation outputs (e.g., position, velocity) from 
various sensors rather than raw measurements. The 
system is asynchronous, and the fusion framework 
performs a state update whenever a measurement from 
any sensor arrives. 

2) EKF covariances and tuning 

The initial state covariance (P) is formulated as 
equation (16). 

𝐏𝐏0 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎𝑝𝑝2,𝜎𝜎𝑝𝑝2,𝜎𝜎𝜓𝜓2 ,𝜎𝜎𝑣𝑣2,𝜎𝜎𝜓̇𝜓
2) (16) 

with large diagonal entries reflecting prior 
uncertainty. The process noise 𝐐𝐐  captures CTRV 
model mismatch (e.g., unmodeled longitudinal/lateral 
accelerations and turn‐rate perturbations) and is tuned 
empirically to balance responsiveness and noise 
attenuation. The Measurement Noise Covariance 𝐑𝐑 is 
represented as a diagonal matrix in equation (17). 

𝐑𝐑 = �𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺 0
0 𝑅𝑅𝐺𝐺𝐺𝐺𝐺𝐺

� (17) 

Initialized from sensor datasheets and refined 
manually along the process. 

3) Sensor synchronization 

The sensors used in the experiments operate at 
different rates (e.g., IMU: 50 Hz, GPS: 10 Hz, 
Odometry: 100 Hz). To enable consistent fusion across 
disparate sampling rates, the following procedures are 
employed: 

a) Hardware Timestamping: All sensor data was 
tagged with a common timestamp upon arrival. 

b) Rate alignment (prediction vs. update): The EKF 
prediction executes at the highest available rate 

(100 Hz). Updates are performed at each 
measurement’s exact timestamp; slower sources 
(e.g., GPS) are not upsampled and update only at 
their native rate to avoid phase lag. When 
necessary, the predicted state is propagated to the 
precise measurement time prior to correction. 

4) Calibration procedures 

The Bosch BNO055 IMU performs on-board, 
automatic calibration of the magnetometer, gyroscope, 
and accelerometer. Following calibration, the device 
provides bias-compensated, low-pass–filtered 
measurements; calibration status flags were 
continuously monitored, and measurements were 
admitted to the fusion pipeline only when the sensor 
reported a fully calibrated state. The BU-353N5 GPS 
receiver requires no user-initiated calibration, as signal 
conditioning and filtering are handled internally by the 
receiver firmware. The static rigid-body extrinsic 
transform between the IMU frame and the GPS 
antenna frame was determined by mechanical 
measurement and applied as a fixed parameter during 
sensor fusion. 

5) Data preprocessing 

Given embedded filtering on both devices, external 
preprocessing is minimal and limited to unit 
normalization, frame alignment, and conservative 
outlier rejection based on covariance/innovation 
thresholds.  

6) Computational cost analysis 

With a modest state dimension and low‐
dimensional measurements, the runtime is dominated 
by the small matrix inversion in the update step. The 
combination of tuned 𝐐𝐐/𝐑𝐑 and minimal preprocessing 
enables real-time execution on a low-cost embedded 
processor. 

III. Results and Discussions 
The data collection and processing using GPS, IMU, 

and odometry sensors were collected at various velocity 
levels (1 to 5) with three repetitions to ensure the 
reliability along a 67-meter path. The parameters 
recorded included position, velocity, acceleration, and 
orientation. The raw data was extracted into CSV files 
and processed using Kalman Filter (KF) and Extended 
Kalman Filters (EKF) to reduce noise and improve 
accuracy. The processed data was then analyzed to 
identify patterns, validate consistency, and the 
performance was compared across different velocities, 
providing insights into the PMV’s behavior and 
navigation system effectiveness. 
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The data in Table 4 represent the variables used for 
sensor fusion. The KF, designed for linear systems, does 
not incorporate data from odometry sensors. It 
processes GPS data by converting latitude and 
longitude to UTM (Universal Transverse Mercator) 
coordinates, which use meters and represent the Earth's 
surface in a nearly flat plane to closely approximate 
real-world distances. The EKF processes IMU data by 
converting quaternion orientation data (x, y, z, w) into 
Euler angles to yield a heading value. Incorporating this 
heading enhances the accuracy of state estimation, 
particularly in applications demanding precise 
orientation information. 

In this experiment, the KF and EKF were 
implemented using the Python programming language. 
The following figures compare the estimated PMV 
position generated by each filter against GPS 
measurements and the actual trajectory. Figure 7 shows 
the comparison of PMV position generated by KF and 
EKF, respectively, for velocity 1 (i.e., 0.5 m/s). In each 
subfigure, the red line represents the actual trajectory, 
the yellow line shows the raw GPS measurement, the 
blue line is the estimated path from the KF, and the 
green line is the estimated path from the EKF. 

Figure 7(a), experiment 1, shows that the KF 
estimate (blue) shows little improvement over the noisy 
GPS data (yellow). In contrast, the EKF estimate 
(green) is noticeably smoother, a result of its ability to 
incorporate and fuse more sensor variables, including 
orientation. 

In Figure 7(b), experiment 2, the estimated state of 
KF appears smoother compared to experiment 1, and 
the EKF performance remains consistent. Figure 7(c) 
represents experiment 3, the KF performance degrades 
slightly but remains better than in experiment 1. The 
EKF continues to provide a stable and smooth estimate. 
The variability in KF performance across these three 
runs at the same velocity suggests underlying data 
inconsistencies.  

Figure 8 shows a comparison of estimated PMV 
localization between KF and EKF based on the 
experiment results for velocity 2 (i.e., 0.7 m/s). Across 

all three experiments, the EKF estimate (green) 
consistently produces a smoother path that more 
closely follows the actual trajectory (red) compared to 
the KF estimate (blue). The gap between the GPS 
measurement (yellow) and the KF output is notably 
larger than the gap for the EKF, highlighting the EKF's 
superior fusion capabilities. 

Figure 9 illustrates the results for velocity 3 (i.e., 0.9 
m/s). In Experiment 1, a significant disconnection is 
observed between the GPS measurement and the KF 
estimate. The KF performance improves in 
Experiments 2 and 3. The EKF, however, demonstrates 
robust and smooth estimation across all three 
experiments, effectively correlating the GPS data with 
other sensor inputs to produce a reliable path. 

The experimental results at velocity 4 (i.e., 1.0 m/s), 
shown in Figure 10, highlight a significant discrepancy 
between the GPS measurements and the KF estimate in 
Experiments 1 and 2 (Figures 10(a) and 10(b)). The 
results of experiment 3 (Figure 10(c)) is more favorable 
for the KF. The EKF approach (Figures 10(a), 10(b), 
and 10(c)) demonstrates a consistent and notable 
improvement in tracking the actual trajectory across all 
three experiments, again proving its effectiveness. 

The results of the experiment at velocity 5 (i.e., 1.23 
m/s) are shown in Figure 11. The KF results show a 
large gap in Experiment 3, larger than in the previous 
two. The EKF, in contrast, provides consistent and 
accurate estimation results across all three experiments. 
Analyzing all position graphs confirms that the EKF 
method significantly enhances GPS positioning 
accuracy, especially at higher velocities. 

Table 5 quantifies the deviations across experiments. 
At velocities 2–5, the results show a consistent pattern 
in maximum deviations, with the Extended Kalman 
Filter (EKF) significantly reducing deviations 
compared to the global positioning system (GPS) and 
the Kalman Filter (KF). This aligns with findings in the 
literature, where EKF-based fusion is established as a 
superior method for integrating noisy sensor data to 
achieve robust localization. 

 

Table 4. 
Variable used for KF and EKF. 

Methods 
Variable used 

GPS IMU Odometry 

Kalman Filter Latitude Linear acceleration 𝑥𝑥  

Longitude Linear acceleration 𝑦𝑦  

Extended Kalman Filter Latitude Orientation 𝑥𝑥 Velocity linear 𝑥𝑥 

Longitude Orientation 𝑦𝑦  

Altitude Orientation 𝑧𝑧  

 Orientation w  

 Angular velocity 𝑧𝑧  
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Figure 7. Position estimation comparison for velocity 1 (i.e., 0.5 m/s). The red line is the actual path, the yellow line is the raw GPS measurement, 
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data 
from experiment 2; (c) data from experiment 3. 
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Figure 8. Position estimation comparison for velocity 2 (i.e., 0.7 m/s). The red line is the actual path, the yellow line is the raw GPS measurement, 
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data 
from experiment 2; (c) data from experiment 3. 
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Figure 9. Position estimation comparison for velocity 3 (i.e., 0.9 m/s). The red line is the actual path, the yellow line is the raw GPS measurement, 
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data 
from experiment 2; (c) data from experiment 3. 
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Figure 10. Position estimation comparison for velocity 4 (i.e., 1.0 m/s). The red line is the actual path, the yellow line is the raw GPS measurement, 
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; 
(b) data from experiment 2; (c) data from experiment 3. 
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Figure 11. Position estimation comparison for velocity 5 (i.e., 1.23 m/s). The red line is the actual path, the yellow line is the raw GPS 
measurement, the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from 
experiment 1; (b) data from experiment 2; (c) data from experiment 3. 
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However, the results at velocity 1 (i.e., 0.5 m/s) 
exhibit an anomalous pattern, where the EKF does not 
consistently outperform the KF. This anomaly is due to 
a combination of factors related to low velocity 
operation. At very low speeds (velocity 1), the PMV's 
torque may have been insufficient for smooth 
operation, potentially causing jerky movements that 
are challenging for the sensor suite to accurately 
capture. Furthermore, consumer-grade IMUs are poor 
at estimating orientation at near-zero velocities, as they 
rely on detecting changes in acceleration. This could 

have led to erroneous heading data being fed into the 
EKF, degrading its performance instead of enhancing it. 
This finding suggests that velocity 1 may fall below the 
operational threshold for reliable data collection with 
this specific sensor configuration. 

The overall experimental results show that the KF 
and EKF methods produced less satisfactory outcomes 
at velocities 1 and 2, likely due to insufficient torque 
affecting sensor performance. This limitation led to 
significant discrepancies in GPS positions, as the IMU 
sensor failed to adequately correct GPS errors. At 

Table 5.  
The comparison of the maximum deviation for each experiment. 

Experiment Actual angle Max. dev (meters) Standard dev. (meters) 

Velocity 1 Exp 1 
GPS 

-0.082147205 
4.441220879 2.791466349 

KF 4.374593162 2.723305061 
EKF 4.900244650 2.959690800 

Velocity 1 Exp 2 
GPS 

-0.079849065 
4.792756410 2.716674981 

KF 4.895189691 2.652861422 
EKF 4.539480327 2.648906804 

Velocity 1 Exp 3 
GPS 

-0.063037491 
4.138879184 2.476751397 

KF 3.922460401 2.393352093 
EKF 4.092495831 2.479428884 

Velocity 2 Exp 1 
GPS 

-0.057103325 
3.343774931 1.634985730 

KF 3.440080683 1.584620518 
EKF 2.958607580 1.548663503 

Velocity 2 Exp 2 
GPS 

-0.051540529 
4.012807186 1.688056773 

KF 4.125835309 1.644807493 
EKF 3.688686857 1.659473314 

Velocity 2 Exp 3 
GPS 

-0.046880931 
4.197395417 1.755804794 

KF 4.303153379 1.719755914 
EKF 3.717174256 1.696013143 

Velocity 3 Exp 1 
GPS 

-0.029186403 
2.756307334 1.059060606 

KF 2.879268504 1.094573606 
EKF 1.907657645 0.612034186 

Velocity 3 Exp 2 
GPS 

-0.011779022 
2.529552660 0.934130422 

KF 2.630449147 0.988442003 
EKF 2.343440987 0.895583181 

Velocity 3 Exp 3 
GPS 

-0.025672189 
2.940068455 1.088233316 

KF 3.081846533 1.087137655 
EKF 2.709623003 1.023161859 

Velocity 4 Exp 1 
GPS 

-0.034917494 
2.984179246 1.167422802 

KF 3.075568334 1.143269313 
EKF 2.710417307 1.138494660 

Velocity 4 Exp 2 
GPS 

-0.044800685 
2.913691625 1.053502319 

KF 3.010538711 1.056807862 
EKF 2.594546528 1.030643036 

Velocity 4 Exp 3 
GPS 

-0.022504571 
2.528435608 0.946894269 

KF 2.661341913 0.982900310 
EKF 2.207299202 0.905092160 

Velocity 5 Exp 1 
GPS 

-0.099544535 
2.341917358 0.897856725 

KF 2.459126889 0.876388158 
EKF 1.852820316 0.870005917 

Velocity 5 Exp 2 
GPS 

-0.057496743 
2.629780872 1.008435589 

KF 2.743251058 1.005977777 
EKF 2.343281522 0.941865189 

Velocity 5 Exp 3 
GPS 

-0.060365371 
2.519603607 1.084482795 

KF 2.652454142 1.069278176 
EKF 2.178411405 1.034850406 
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velocities 3–5, the EKF approach demonstrated a clear 
improvement in accuracy. By continuously refining 
state estimates with updated sensor data, computing 
Kalman gain, and minimizing the influence of noise, 
the EKF effectively reduced deviations and improved 
position estimates. This process ensured that the final 
state estimations closely matched the true trajectory, 
enhancing the overall precision and reliability of the 
navigation system [33]. 

The results also demonstrate that sensor fusion (i.e., 
EKF-based fusion) significantly improves localization 
accuracy by combining data from multiple sensors, 
including GPS, IMU, and odometry, to overcome the 
limitations of individual sensors, such as GPS signal 
degradation or IMU drift [23][34]. This is particularly 
crucial when using low-cost, consumer-grade sensors, 
as in this study. While affordable, these sensors have 
well-documented limitations, including lower 
precision and higher inherent noise, all of which can 
affect the overall accuracy and reliability of the system 
[35][36]. 

These limitations directly impacted the results. The 
presence of tall buildings around the test site 
introduced multipath effects, causing significant GPS 
inaccuracies [7][24]. The consumer-grade IMU likely 
experienced considerable drift and noise, especially at 
lower velocities. The unexpected patterns and 
inconsistencies observed, particularly the anomalous 
performance at velocity 1 and the varying performance 
of the KF across repeated trials at the same velocity, can 
be attributed to these sensor quality issues and 
challenging environmental factors. 

The implementation of EKF's primary objective is 
to mitigate these issues by fusing the imperfect data 
streams. Its superior performance at most velocities 
demonstrates that while sensor fusion cannot 
completely eliminate the constraints of low-cost 
hardware, it is an effective strategy for maximizing their 
potential and achieving a more accurate and reliable 
localization solution [24][37][38]. Future work would 
benefit from testing with higher-grade sensors to 
establish a performance baseline and further quantify 
the improvement achievable through fusion algorithms. 

IV. Conclusion 

This study aimed to enhance the localization 
accuracy and reliability of PMV in challenging outdoor 
environments by fusing data from consumer-grade 
GPS, wheel odometry, and IMU sensors, using Kalman 
Filter (KF) and Extended Kalman Filter (EKF) methods. 
The experimental results show that the EKF 
consistently outperforms the standard KF, particularly 
at medium to higher velocities (3–5), where EKF 

enhances vehicle position accuracy by approximately 
29 %, and reduces the maximum deviation to a range of 
1.8 m to 2.7 m. EKF-based sensor fusion demonstrates 
significant potential. However, the study also revealed 
notable limitations. Performance was notably weaker at 
lower velocities (1–2), where anomalies suggested that 
insufficient torque and the inherent limitations of 
consumer-grade IMUs in estimating orientation at 
near-zero speeds degraded sensor fusion performance. 
Furthermore, multipath effects from nearby tall 
buildings introduced substantial GPS noise, 
highlighting the vulnerability of relying on consumer-
grade GNSS in urban canyons. For future work, several 
aspects for improvement are recommended. First, with 
advancements in sensor technology and cost 
reductions, incorporating additional sensors like 
LiDAR and cameras could provide complementary 
data for scan matching and visual odometry, drastically 
reducing dependence on error-prone GPS signals, and 
can further improve navigation system precision and 
reliability. Second, exploring advanced algorithms like 
Unscented Kalman Filters (UKF) or AI-driven deep 
sensor fusion networks could better handle the non-
linearities and complex noise characteristics of low-cost 
sensors. For real-world deployment, scaling this system 
presents challenges, including the computational load 
of processing data from multiple high-frequency 
sensors on embedded hardware. Incorporating more 
advanced computational methods is expected to 
enhance the efficiency and performance of EKF-based 
systems. Moreover, robust calibration procedures 
across diverse operating conditions and ensuring 
system resilience against unpredictable environmental 
factors are also essential for making them suitable for a 
wide range of applications, from personal mobility 
vehicles to large-scale autonomous transportation 
networks. 
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