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Abstract

Personal mobility vehicles (PMVs) are gaining popularity for short urban trips, reducing car reliance and urban pollution.
The development of autonomous PMV's heavily relies on accurate localization, often using the global positioning system (GPS)
as a primary sensor. However, standard GPS suffers from poor accuracy, which requires data fusion with supplementary sensors
to improve precision. This study presents a sensor fusion approach using low-cost, consumer-grade hardware to enhance the
PMV localization. The fusion system integrates data from an inertial measurement unit (IMU) and wheel odometry with GPS,
fusing them via Kalman Filter (KF) and Extended Kalman Filter (EKF) methods. A field experiment was conducted along a 67-
meter route at velocities ranging from 0.25 to 1.23 m/s. Comparative analysis has shown that the EKF method consistently
outperforms the standard KF, improving positioning accuracy by approximately 29 % and reducing the maximum deviation to
arange of 1.8 m to 2.7 m across different velocities. The results have confirmed the EKF as an effective and reliable strategy for
achieving high-precision localization with affordable sensors, a key step towards scalable autonomous navigation for PMVs.

Keywords: Extended Kalman Filter; sensor fusion; low-cost sensors; personal mobility vehicles; autonomous navigation; outdoor

navigation; outdoor localization; localization accuracy.

I. Introduction

In recent years, there have been significant
advancements in transportation technology, which
have been driven by the need for mobility solutions that
are more efficient, sustainable, and accessible. Personal
mobility vehicles (PMVs), which include electric
wheelchairs, scooters, and electric bikes, have gained
more popularity recently as efficient, sustainable, and
accessible transportation options for daily mobility and
assisted living [1].
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To further improve the functionality of these
vehicles, one promising strategy is the integration of
autonomous features. This integration aims to provide
more convenient, efficient, and comfortable operation
for the users. Autonomous PMVs can navigate through
complex environments and avoid obstacles without
continuous human intervention [2][3]. This capability
depends on the precise and reliable navigation systems
that can accurately determine the vehicle's position and
orientation in real-time, a requirement that is
particularly critical in varied outdoor environments [4].
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However, achieving reliable autonomy in cost-sensitive
PMVs is primarily hindered by the limitations of
affordable positioning systems, particularly in
challenging urban environments.

In outdoor navigation, the global positioning
system (GPS) is commonly used as a primary sensor.
However, its performance can be greatly affected by
signal loss, multipath effects, and reduced accuracy in
densely populated urban regions [5][6][7]. These
limitations will create a significant challenge for safe
autonomous operation, which requires an accurate
representation of the environment and a reliable
assessment of the vehicle's current state, a process
known as localization.

To address these challenges, sensor fusion methods
are commonly used to combine data from multiple
methods
complementary strengths of different sensors to

sources [8]. These leverage the
mitigate the weaknesses of any individual one,
providing more robust and accurate localization results
[9]. Sensor fusion often involves augmenting GPS with
additional sensors such as an odometer, which is
known for its short-term accuracy and robust
resistance to external interference, and an inertial
measurement unit (IMU), which provides crucial data
on acceleration and rotation. When these sensors are
fused with GPS through an integrated navigation
system (INS), the positional accuracy and reliability will
be significantly enhanced [10].

In addition, other sensors such as light detection
and ranging (LiDAR), radar, and magnetometers are
also frequently integrated in navigation systems to
create a more comprehensive perception of the
environment [11][12]. The data fusion can be
implemented at three levels, which are low-level (raw
data), mid-level (feature), and high-level (decision-
making) [13]. The integrated data from these sensors
will create a critical foundation for the vehicle's
decision-making processes.

Several methods have been designed in sensor
fusion to improve the precision of the GPS-based
localization system. Among these, the Extended
Kalman filter (EKF) has been widely investigated for its
effectiveness in combining various sensor data with the
GPS localization system. For instance, the EKF method
can enhance vehicle position estimation accuracy by
predicting position and velocity data based on IMU and
odometry inputs and subsequently updating this
information using GPS data, thereby guaranteeing
long-term accuracy [14][15][16].

The EKF offers several benefits, including the ability
to precisely track the GPS data for position and velocity
estimates, demonstrating its strong implementation
potential [9][15][16]. Other advantages include its local

stability, ease of implementation, and relatively low
computational cost, making it suitable for real-time
applications on constrained hardware [17]. The EKF
works well for estimating nonlinear states [18],
processing noisy measurements in dynamic systems in
real-time [19] and estimating vehicle state parameters
with high accuracy [20].

However, EKF’s performance is dependent on the
quality of its models and sensors, where the use of low-
cost components can impact data reliability. In
addition, incorrect system modeling or noise
characteristics can also significantly reduce the EKF’s
effectiveness. Although EKF-based sensor fusion is a
well-established sensor fusion method in automotive
and  high-precision robotics applications, its
implementation for low-cost PMVs introduces unique
challenges. These challenges arise from the use of
consumer-grade sensors and the distinctive dynamic
profile characteristic of low-speed vehicles, an area that
has received comparatively limited attention in existing
literature.

Several studies have utilized the low-cost global
navigation satellite system (GNSS), IMU, odometry,
and the sensor fusion has been conducted using a
Kalman Filter-based method. However, the approach
proposed in [21] was constrained by its limited
applicability in the x and y dimensions; thus, it is found
to be not compatible for hill terrains, and it also
employs a basic EKF model without any dynamic noise
adaptation [21]. Other studies employ GPS and IMU
using the Unscented Kalman Filter (UKF)
methodology, utilizing the KITTI dataset. However,
this research exhibits significant computing complexity
and is susceptible to error modelling [22]. Study in [23]
offered an asynchronous integration of GPS, IMU, and
controller area network (CAN) bus odometry using
EKF, which effectively manages asynchronous data, but
it is found to be less appropriate for real-time
applications because of its processing demands and
non-causal characteristics [23]. In the study of [24], the
integration of GPS, IMU, and odometer with EKF
demonstrates greater stability under GPS disturbances.
Nonetheless, it still encounters cumulative errors upon
the loss of previous GPS data and is constrained to basic
test scenarios [24]. Therefore, this study investigates the
implementation of an EKF-based sensor fusion system
to enhance the outdoor navigation capabilities of cost-
effective PMV. By integrating data from consumer-
grade GPS, wheel odometry, and an IMU, the study
aims to improve the accuracy and reliability of vehicle
localization in challenging outdoor environments.
Therefore, the main objective of this work is to design
an advanced, yet accessible navigation technology that
is both practical and applicable for real-life scenarios.
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More specifically, the contributions of this study
include:

1. Design and development of a practical EKF-based
fusion algorithm for cost-effective PMVs: the
study presents a sensor fusion architecture based
on the EKF, designed for cost-effective personal
mobility vehicles (PMVs). This approach
provides a practical and effective method to
enhance the precision and reliability of outdoor
navigation systems that would otherwise be
compromised by low-cost GPS.

2. Comprehensive experimental validation: the
research  includes extensive experimental
validation in real-world outdoor settings. These
experiments evaluate the system's performance,
demonstrating not only its feasibility but also a
significant improvement in localization accuracy
and reliability.

3. Enhancing accessibility —through advanced
affordable navigation technology: the research
emphasizes cost-effective solutions by using
consumer-grade GPS sensors with low-cost
complementary sensors, making advanced
navigation technologies more accessible for real-
world applications and commercial viability.

The remainder of this paper is organized as follows:
Section 1 reviews related research on sensor fusion
methods, localization methods for autonomous
systems, and the specific application of the EKF in
robotics and autonomous vehicles. Section 2 details the
materials and methods, encompassing the vehicle
system, the integration of sensors (GPS, IMU, and
wheel encoders), the experimental setup (including
environments, PMV configuration, and data collection
process), the design and implementation of the EKF-
based sensor fusion algorithm, and the evaluation
criteria for the proposed system. Section 3 analyzes the
experimental results, comparing the proposed method

&g

with baseline GPS localization methods and discussing
improvements in accuracy. Finally, Section 4
summarizes the key findings, highlights the importance
of EKF-based sensor fusion in PMV navigation, and
suggests potential pathways for future research.

I1. Materials and Methods

A. Personal mobility vehicle

A personal mobility vehicle (PMV) is a type of
electric vehicle that is becoming increasingly popular
[25]. These vehicles, powered by an electric motor, can
reach velocities of about 2 m/s, which is comparable to
the walking velocity of an average person [26][27].
PMVs are primarily used in urban settings or restricted
areas for short-distance travel ranging from 0.8 to 3.2
km, with the aim of minimizing car usage for short
distances [25]. In many European cities, PMVs are
more popular than bicycles. Figure 1 illustrates the
categorization of PMVs according to their velocity.
This study utilized a low-velocity PMV in its
framework.

B. SEATER: Single passenger electric
autonomous transporter

Introduced in 2023, the National Research and
Innovation Agency (BRIN) developed the SEATER as a
new type of PMV. The design allows it to operate
autonomously in specific and controlled spaces like
airports, theme parks, large office buildings, and similar
indoor areas. Its purpose is to offer a safe and
convenient mode of transportation within these
environments. Although it is still in the development
phase, SEATER has the potential to transform personal
transportation, making urban areas more livable and
sustainable in the future.

[ { s T
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Figure 1. PMVs categories (adopted from [28]).
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Figure 2. The SEATER.

Figure 2 illustrates components present on the
SEATER, including features and sensors. Additionally,
there is a joystick available for manual operation.
Several sensors are present, including a camera, GPS,
odometry, and IMU (positioned beneath the seat).
There are two types of wheels: the rear wheels are
differential wheel drives, and the front wheels are
omnidirectional supporting wheels [29]. Table 1
provides the specifications for the SEATER platform, a
compact personal mobility vehicle that is ideal for
confined spaces usage where agility is crucial, such as

indoor environments or heavily crowded urban regions.

C. Sensor integration

The experiment platform incorporates GlobalSat
BU-353N5 GPS, Adafruit BNO055 9-DOF IMU, and

Table 1.
SEATER specification.
Specification Description
Type Autonomous personal mobility
vehicle
Driving type Electric drive; differential drive
Dimension Approx. 120x75x110 cm
Weight Approx. 50 kg
Passenger 1 person/max 120 kg

capacity/maximum weight
Max velocity 1.5 m/s or approx. 5 km/hour
Max coverage distance Approx. 10 km
Max operational duration  Approx. 2 hours
(fully charged)

Operational mode Manual/autonomous

wheel odometry sensors that function as navigation
sensors. The PMV mounts the GPS sensor on its arm,
places the IMU under its seat, and places the wheel
odometry on its rear wheels. The GPS sensor provides
absolute position data used as the main reference for
navigation. The IMU sensor provides orientation and
motion data that help improve the vehicle’s position
and orientation when the GPS signal is unavailable or
disrupted, as well as detect changes in direction and
velocity. Meanwhile, the wheel odometry sensor
accurately measures the vehicle’s distance traveled and
velocity. The GPS and IMU refine their position
estimates using this data, particularly when the GPS
data is inaccurate. All this sensor data is processed
using the Kalman Filter and the Extended Kalman
Filter method.

D. Environmental setting

Figure 3 shows the data collection site, which is
located at KST Samaun Samadikun, BRIN, Bandung (-
6.8820317°, 107.6114834"). The yellow line illustrates
the path followed by SEATER, starting at point A and
ending at point B. The total track length is
approximately 67 meters.

E. Data collection procedure

Figure 4 shows the data collection process and
extraction for SEATER. In this study, the data
collection process was repeated three times for each
variation of velocity to verify the accuracy of the
collected data and to facilitate cross-set comparisons.
Additionally, it helps to observe the patterns of the data.
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The data collection path was 67 meters long, and the Figure 4 illustrates the data collection procedure
SEATER moved at a constant velocity as conducted across five different velocity levels, with each
predetermined, ensuring consistent data since the velocity level repeated three times to ensure data
velocity variable did not change during data collection. reliability. Data from the GPS, IMU, and odometry
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Figure 3. Path used for data collection.
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Figure 4. Data collection procedure.
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Table 2.

Variation of velocity level.
Velocity Level Velocity
Velocity 1 0.5m/s
Velocity 2 0.7 m/s
Velocity 3 0.9 m/s
Velocity 4 1 m/s
Velocity 5 1.23 m/s

sensors were collected at each velocity level and
extracted into a CSV file for further analysis. Following
data collection, Kalman Filter and Extended Kalman
Filter methods were designed to fuse the localization
data, and the localization accuracy achieved by each
approach was analyzed.

Table 2 displays the velocity variations and their
corresponding velocity level. Three trials were
conducted for each velocity level in the experiment to
gather robust data. Table 3 presents the quantitative
measure of the total data collected. The data obtained
from the GPS sensor are captured at a frequency of 1
Hz (one data point per second), while the IMU data
were captured approximately 100 Hz (100 data points
per second), and the odometry data were captured at
over 200 Hz (more than 200 data points every second).
The SEATER’s velocity influences the duration of each
trial: higher velocity shortens travel time, resulting in
less data collected, while lower velocity extends travel
time, allowing for a greater volume of data to be
collected.

Table 3.
Data collection for each variation of velocity level.

F. Evaluation criteria

This study employs a metric-based approach to
evaluate the enhancement in localization precision
achieved by the Kalman Filter (KF) and Extended
Kalman Filter (EKF) algorithms. The study compares
the estimated vehicle positions from the KF and EKF
against the raw GPS measurements. The primary
objective is to quantify the reduction in positional error
(deviation) offered by the filtered estimates, thereby
assessing their effectiveness and optimization in
improving GPS accuracy.

The key metric for this assessment is the Euclidean
distance between the estimated position from the filter
(the best estimate of the true position) and the raw GPS
measurement. This deviation, calculated for each data
point, provides a direct measure of the filter's
correction. A smaller deviation indicates a more
significant correction and a higher improvement in
accuracy. The overall performance is then evaluated by
analyzing the statistical distribution (e.g., mean,
maximum, standard deviation) of these errors across
the entire dataset.

Localization performance was assessed using a
metric-based approach centered on lateral deviation
(Dev), defined as the signed perpendicular distance
from an estimated position to a straight-line reference
path. Let the reference path be the line segment from
the start point Py = (x,, y,) to the goal Py = (x4, y f)
where x, and y is the initial coordinate and x; and y f

is the final coordinate, respectively. The nominal path
heading is defined in equation (1) as:

Velocity variation Number of data
GPS IMU Odometry
Velocity 1 Exp 1l 137 13735 27471
Exp 2 131 13090 26179
Exp 3 135 13479 26954
Velocity 2 Exp1 95 9518 19019
Exp 2 97 9655 19318
Exp 3 94 9386 18775
Velocity 3 Exp 1 70 7060 14592
Exp 2 72 7214 14423
Exp 3 73 7301 14592
Velocity 4 Exp 1 63 6231 12460
Exp 2 74 7364 14731
Exp 3 61 6134 12265
Velocity 5 Exp 1 53 5310 10621
Exp 2 52 5237 10472
Exp 3 54 5412 10814
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Oref = atanZ(yf — Yo X5 — Xg) (1)

For any estimated position P = (x,y) (from GPS, KF,
or EKF), the expected y-coordinate on the reference
path at the same x -coordinate is defined as
equation (2):

Yact =Yo + tan(gref)(x — Xo) (2)

and the instantaneous Dev is given as equation (3):

Dev=y—y (3)

act

where smaller |Dev| indicates closer adherence to the

intended trajectory. For each trajectory {Dev, }r_,, it
can be seen in equation (4) and equation (5) that:

Max Dev = m}fxlDevkl (4)

1
Opey = \/E ZIIX=1(Der - #Dev) (5)

Here, pp - reflects average signed bias, Max Dev

captures worst-case lateral error, and op,, is the
Standard Dev indicating consistency/stability.

G. Extended Kalman Filter architecture

The Kalman Filter (KF) is a prediction/update
method that generates optimal estimation on unknown
variables by using a sequence of measurements
recorded over time, which may contain statistical noise.
Based on Bayesian probability, this method computes

optimal estimates by utilizing Gaussian probability
distributions and linear algebra [30].

In contrast, the Extended Kalman Filter (EKF) is
utilized for nonlinear systems [21]. EKF manages
nonlinearity by linearizing the system around the
current estimate point, which is subsequently
processed via the Kalman Filter [31]. Nonlinearity in a
problem can manifest in two key areas: the process
model employed for state prediction and the measures
derived from the observation model.

In the experiment, the variables used in the state
vector are shown in equation (6), where x; is the state
vector, x and y are the position from the GPS sensor, 1
is heading from IMU, v is velocity from odometry, and

1 is the yaw rate from IMU.
[ x] Position X
y PositionY
Xk = |y |= | Heading (6)

v Velocity |
ll/) J Yaw rate J

Figure 5 illustrates the Extended Kalman Filter cycle,
highlighting the role of the Jacobian matrix, which
represents the partial derivatives of the nonlinear
function with respect to its variables. The Jacobian
matrix is essential for linearizing the nonlinear model,
allowing the filter to estimate the state of the nonlinear
system. The Jacobian matrix is critical in EKF, as it
helps to deal with the system's nonlinearity and
measurements. By linearizing the model via the

New state (predicted, based on
physical model and previous state)

Initial state Previous state
xo S5 Xe+1 = 9 (X ) .
___________________ > - e T g(x;, 1) = non linear state
Py Initial state Py Poyi=JaPJa+0Q transition matrix. A function
Rabines of the state and control
i A variable.
Previous i
Subseript k | Curent state ; g
represents e J = Jacobian matrix
e.aCh state previous Q = Process noice
Iteration covariance matrix. Keeps
cycle the state covariance matrix
Y from becoming too small or
- going to 0.
Xk xp = xp + Ky (2 —h(x)) % P I
- - k= T
P o JuPJu+R
b P =~ KiJy) Py
Output of State and covariance update Calculate Kalman gain
updated state

1= Identity matrix
Z = measurement noise
hixy) = non linear
measurement matrix

x = State matrix
P = Process covariance
matrix (represents error
in the estimate)

K = Kalman gain

R = Sensor noise/measurement covariance matrix
Ju = Jacobian of the measurement matrix (to make

sizes consistent)

Figure 5. Extended Kalman Filter system [32].
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Jacobian matrix, EKF can work with nonlinear models
and provide better estimates of the system's state.

The EKF cycle starts with an initial state estimate X,
and covariance Py. In the prediction phase, the current
estimate is propagated through the nonlinear motion
model g(-). Since the model is nonlinear, it is then
locally linearized with the state Jacobian, J, = 0g/0x.
When a sensor reading arrives, the update phase is
executed by comparing the measurement with the
predicted measurement from the nonlinear sensor
measurement model h(-), linearized by the
measurement Jacobian J; = dh/0x. Kalman gain then
balances trust between model and sensor to produce a
corrected state and reduced covariance. The corrected
pair becomes the starting point for the next cycle (and
multiple updates can occur asynchronously within one
time step). The complete EKF formulation is provided
in equation (7) to equation (13).

Prediction:

X = g (Xp—1, Uy) (7)
Pe=JaP )i+ Q (8)
Update:

Vi = Zi — h(xy) )
St =Ju P Ji +R (10)
K, =P, Jj S (11)
X = Xi + Ky ¥ (12)
Py = (1= Ky Ju)Py (13)

The process-noise covariance is denoted by Q

(capturing  unmodeled  dynamics), and the

measurement-noise covariance by R (capturing sensor

( Start )

uncertainty).

H. Implementation setting of the EKF method

The EKF extends the linear Kalman Filter to
nonlinear systems by linearizing the process and
measurement models around the current state estimate.
The implementation assumes a planar (2D) motion
model for a ground vehicle, estimating position,
velocity, and heading on a flat surface. The algorithm
operates through a continuous cycle of prediction and
update steps, fusing asynchronous data from multiple
sensors. The overall workflow of this iterative process is
illustrated in Figure 6.

As shown in Figure 6, the process begins with the
initialization of the state vector and covariance matrix
(X0, Py). The algorithm then iterates through a
prediction step, where the next state (X') and its
covariance (P") are projected using the motion model,
and an update step, where new sensor data is fused to
correct the prediction. The Kalman Gain (K) is
computed to optimally balance the weight given to the
new measurements against the prior predictions. This
gain is then used to update the state estimate (X),
refining the position, velocity, and orientation
estimates. The covariance estimate (P) is also updated
to reflect the reduced uncertainty. The cycle then
repeats, ready for the next iteration.

1) Process and measurement model definition

The EKF operates on two fundamental models: the
process model, which predicts the evolution of the state,
and the measurement model, which predicts the sensor
outputs based on the state.

The discrete-time process model is defined as
equation (14).

X = f(Xg—1, Ug—1) + Wi_q (14)

Y

Initialize state vector x and
covariance matrix P

A\ 4

Update the state estimate (x) using the measurements

Updating State:
Compute the Kalman Gain (K)

Update the covariance estimate (P)

Prediction State:
Predict the next state (x')
Predict the next covariance (P'")

Y

Collecting data from GPS,
IMU, and Odometry

Y

Output:

The updated state and covariance

End

Figure 6. EKF flowchart. The filter initializes (X0, Py), predicts (X', P’) using the motion model and process noise Q, then updates on

measurement arrival by computing the Kalman gain, correcting the state and covariance, and repeating.
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where X is the state vector at time step k, f(-) is the
nonlinear state transition function, u_; is the control
input, and wy,_; is the process noise, assumed to be
zero-mean Gaussian with covariance Q.

For the planar implementation, the state vector is
simplified to x = [px,py, ¥, v,P] T (see equation 6)
where (px, py) represent the 2D position in the world
frame; 1 is the vehicle's heading (yaw) angle; v
represents the linear velocity (speed); and 1 is the yaw
rate. A constant turn rate and velocity (CTRV) model
was employed. The control input u is derived from the
inertial measurement unit (IMU) gyroscope for yaw
rate and wheel odometry for velocity.

The measurement model is defined as equation (15).

z, = h(xp) + vy (15)

where h(-) maps the state to the expected measurement,
and vy, is the measurement noise with covariance R.

A loosely coupled strategy was adopted for its
simplicity and robustness. This approach fuses the
navigation outputs (e.g., position, velocity) from
various sensors rather than raw measurements. The
system is asynchronous, and the fusion framework
performs a state update whenever a measurement from
any sensor arrives.

2) EKF covariances and tuning

The initial state covariance (P) is formulated as
equation (16).

PO = diag(Gg, 0-3: 0}?}' O-vzl 0-12) (16)

with large diagonal entries reflecting prior
uncertainty. The process noise Q captures CTRV
model mismatch (e.g., unmodeled longitudinal/lateral
accelerations and turn-rate perturbations) and is tuned
empirically to balance responsiveness and noise
attenuation. The Measurement Noise Covariance R is
represented as a diagonal matrix in equation (17).

R 0
R — [ GPS 17
0 Reps 17

Initialized from sensor datasheets and refined
manually along the process.

3) Sensor synchronization

The sensors used in the experiments operate at
different rates (e.g, IMU: 50 Hz, GPS: 10 Hz,
Odometry: 100 Hz). To enable consistent fusion across
disparate sampling rates, the following procedures are
employed:

a) Hardware Timestamping: All sensor data was
tagged with a common timestamp upon arrival.

b) Rate alignment (prediction vs. update): The EKF
prediction executes at the highest available rate

(100 Hz). Updates are performed at each
measurement’s exact timestamp; slower sources
(e.g., GPS) are not upsampled and update only at
their native rate to avoid phase lag. When
necessary, the predicted state is propagated to the
precise measurement time prior to correction.

4) Calibration procedures

The Bosch BNOO055 IMU performs on-board,
automatic calibration of the magnetometer, gyroscope,
and accelerometer. Following calibration, the device
provides

bias-compensated, low-pass—filtered

measurements;  calibration  status flags  were
continuously monitored, and measurements were
admitted to the fusion pipeline only when the sensor
reported a fully calibrated state. The BU-353N5 GPS
receiver requires no user-initiated calibration, as signal
conditioning and filtering are handled internally by the
receiver firmware. The static rigid-body extrinsic
transform between the IMU frame and the GPS
antenna frame was determined by mechanical
measurement and applied as a fixed parameter during
sensor fusion.

5) Data preprocessing

Given embedded filtering on both devices, external
preprocessing is minimal and limited to unit
normalization, frame alignment, and conservative
outlier rejection based on covariance/innovation
thresholds.

6) Computational cost analysis

With a modest state dimension and low-
dimensional measurements, the runtime is dominated
by the small matrix inversion in the update step. The
combination of tuned Q/R and minimal preprocessing
enables real-time execution on a low-cost embedded
processor.

II1. Results and Discussions

The data collection and processing using GPS, IMU,
and odometry sensors were collected at various velocity
levels (1 to 5) with three repetitions to ensure the
reliability along a 67-meter path. The parameters
recorded included position, velocity, acceleration, and
orientation. The raw data was extracted into CSV files
and processed using Kalman Filter (KF) and Extended
Kalman Filters (EKF) to reduce noise and improve
accuracy. The processed data was then analyzed to
identify patterns, validate consistency, and the
performance was compared across different velocities,
providing insights into the PMV’s behavior and
navigation system effectiveness.
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Table 4.
Variable used for KF and EKF.

Variable used

Methods
GPS IMU Odometry
Kalman Filter Latitude Linear acceleration x
Longitude Linear acceleration y
Extended Kalman Filter Latitude Orientation x Velocity linear x
Longitude Orientation y
Altitude Orientation z

Orientation w

Angular velocity z

The data in Table 4 represent the variables used for
sensor fusion. The KF, designed for linear systems, does
not incorporate data from odometry sensors. It
processes GPS data by converting latitude and
longitude to UTM (Universal Transverse Mercator)
coordinates, which use meters and represent the Earth's
surface in a nearly flat plane to closely approximate
real-world distances. The EKF processes IMU data by
converting quaternion orientation data (x, Y, Z, w) into
Euler angles to yield a heading value. Incorporating this
heading enhances the accuracy of state estimation,
particularly in applications demanding precise
orientation information.

In this experiment, the KF and EKF were
implemented using the Python programming language.
The following figures compare the estimated PMV
position generated by each filter against GPS
measurements and the actual trajectory. Figure 7 shows
the comparison of PMV position generated by KF and
EKEF, respectively, for velocity 1 (i.e., 0.5 m/s). In each
subfigure, the red line represents the actual trajectory,
the yellow line shows the raw GPS measurement, the
blue line is the estimated path from the KF, and the
green line is the estimated path from the EKF.

Figure 7(a), experiment 1, shows that the KF
estimate (blue) shows little improvement over the noisy
GPS data (yellow). In contrast, the EKF estimate
(green) is noticeably smoother, a result of its ability to
incorporate and fuse more sensor variables, including
orientation.

In Figure 7(b), experiment 2, the estimated state of
KF appears smoother compared to experiment 1, and
the EKF performance remains consistent. Figure 7(c)
represents experiment 3, the KF performance degrades
slightly but remains better than in experiment 1. The
EKF continues to provide a stable and smooth estimate.
The variability in KF performance across these three
runs at the same velocity suggests underlying data
inconsistencies.

Figure 8 shows a comparison of estimated PMV
localization between KF and EKF based on the
experiment results for velocity 2 (i.e., 0.7 m/s). Across

all three experiments, the EKF estimate (green)
consistently produces a smoother path that more
closely follows the actual trajectory (red) compared to
the KF estimate (blue). The gap between the GPS
measurement (yellow) and the KF output is notably
larger than the gap for the EKF, highlighting the EKF's
superior fusion capabilities.

Figure 9 illustrates the results for velocity 3 (i.e., 0.9
m/s). In Experiment 1, a significant disconnection is
observed between the GPS measurement and the KF
estimate. The KF performance improves in
Experiments 2 and 3. The EKF, however, demonstrates
robust and smooth estimation across all three
experiments, effectively correlating the GPS data with
other sensor inputs to produce a reliable path.

The experimental results at velocity 4 (i.e., 1.0 m/s),
shown in Figure 10, highlight a significant discrepancy
between the GPS measurements and the KF estimate in
Experiments 1 and 2 (Figures 10(a) and 10(b)). The
results of experiment 3 (Figure 10(c)) is more favorable
for the KF. The EKF approach (Figures 10(a), 10(b),
and 10(c)) demonstrates a consistent and notable
improvement in tracking the actual trajectory across all
three experiments, again proving its effectiveness.

The results of the experiment at velocity 5 (i.e., 1.23
m/s) are shown in Figure 11. The KF results show a
large gap in Experiment 3, larger than in the previous
two. The EKF, in contrast, provides consistent and
accurate estimation results across all three experiments.
Analyzing all position graphs confirms that the EKF
method significantly enhances GPS positioning
accuracy, especially at higher velocities.

Table 5 quantifies the deviations across experiments.
At velocities 2-5, the results show a consistent pattern
in maximum deviations, with the Extended Kalman
Filter (EKF) significantly reducing deviations
compared to the global positioning system (GPS) and
the Kalman Filter (KF). This aligns with findings in the
literature, where EKF-based fusion is established as a
superior method for integrating noisy sensor data to
achieve robust localization.
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Figure 7. Position estimation comparison for velocity 1 (i.e., 0.5 m/s). The red line is the actual path, the yellow line is the raw GPS measurement,
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data
from experiment 2; (c) data from experiment 3.
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Figure 8. Position estimation comparison for velocity 2 (i.e., 0.7 m/s). The red line is the actual path, the yellow line is the raw GPS measurement,
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data
from experiment 2; (c) data from experiment 3.
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Figure 9. Position estimation comparison for velocity 3 (i.e., 0.9 m/s). The red line is the actual path, the yellow line is the raw GPS measurement,
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1; (b) data
from experiment 2; (c) data from experiment 3.
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Figure 10. Position estimation comparison for velocity 4 (i.e., 1.0 m/s). The red line is the actual path, the yellow line is the raw GPS measurement,
the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from experiment 1;
(b) data from experiment 2; (c) data from experiment 3.
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Figure 11. Position estimation comparison for velocity 5 (i.e., 1.23 m/s). The red line is the actual path, the yellow line is the raw GPS
measurement, the blue line is the Kalman Filter (KF) estimate, and the green line is the Extended Kalman Filter (EKF) estimate. (a) data from

experiment 1; (b) data from experiment 2; (c) data from experiment 3.
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Table 5.
The comparison of the maximum deviation for each experiment.

Experiment Actual angle Max. dev (meters) Standard dev. (meters)
GPS 4.441220879 2.791466349
Velocity 1 Exp 1 KF -0.082147205 4.374593162 2.723305061
EKF 4.900244650 2.959690800
GPS 4.792756410 2.716674981
Velocity 1 Exp 2 KF -0.079849065 4.895189691 2.652861422
EKF 4.539480327 2.648906804
GPS 4.138879184 2.476751397
Velocity 1 Exp 3 KF -0.063037491 3.922460401 2.393352093
EKF 4.092495831 2.479428884
GPS 3.343774931 1.634985730
Velocity 2 Exp 1 KF -0.057103325 3.440080683 1.584620518
EKF 2.958607580 1.548663503
GPS 4.012807186 1.688056773
Velocity 2 Exp 2 KF -0.051540529 4.125835309 1.644807493
EKF 3.688686857 1.659473314
GPS 4.197395417 1.755804794
Velocity 2 Exp 3 KF -0.046880931 4.303153379 1.719755914
EKF 3.717174256 1.696013143
GPS 2.756307334 1.059060606
Velocity 3 Exp 1 KF -0.029186403 2.879268504 1.094573606
EKF 1.907657645 0.612034186
GPS 2.529552660 0.934130422
Velocity 3 Exp 2 KF -0.011779022 2.630449147 0.988442003
EKF 2.343440987 0.895583181
GPS 2.940068455 1.088233316
Velocity 3 Exp 3 KF -0.025672189 3.081846533 1.087137655
EKF 2.709623003 1.023161859
GPS 2.984179246 1.167422802
Velocity 4 Exp 1 KF -0.034917494 3.075568334 1.143269313
EKF 2.710417307 1.138494660
GPS 2.913691625 1.053502319
Velocity 4 Exp 2 KF -0.044800685 3.010538711 1.056807862
EKF 2.594546528 1.030643036
GPS 2.528435608 0.946894269
Velocity 4 Exp 3 KF -0.022504571 2.661341913 0.982900310
EKF 2.207299202 0.905092160
GPS 2.341917358 0.897856725
Velocity 5 Exp 1 KF -0.099544535 2.459126889 0.876388158
EKF 1.852820316 0.870005917
GPS 2.629780872 1.008435589
Velocity 5 Exp 2 KF -0.057496743 2.743251058 1.005977777
EKF 2.343281522 0.941865189
GPS 2.519603607 1.084482795
Velocity 5 Exp 3 KF -0.060365371 2.652454142 1.069278176
EKF 2.178411405 1.034850406

However, the results at velocity 1 (i.e., 0.5 m/s)
exhibit an anomalous pattern, where the EKF does not
consistently outperform the KF. This anomaly is due to
a combination of factors related to low velocity
operation. At very low speeds (velocity 1), the PMV's
torque may have been insufficient for smooth
operation, potentially causing jerky movements that
are challenging for the sensor suite to accurately
capture. Furthermore, consumer-grade IMUs are poor
at estimating orientation at near-zero velocities, as they
rely on detecting changes in acceleration. This could

have led to erroneous heading data being fed into the
EKEF, degrading its performance instead of enhancing it.
This finding suggests that velocity 1 may fall below the
operational threshold for reliable data collection with
this specific sensor configuration.

The overall experimental results show that the KF
and EKF methods produced less satisfactory outcomes
at velocities 1 and 2, likely due to insufficient torque
affecting sensor performance. This limitation led to
significant discrepancies in GPS positions, as the IMU
sensor failed to adequately correct GPS errors. At
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velocities 3-5, the EKF approach demonstrated a clear
improvement in accuracy. By continuously refining
state estimates with updated sensor data, computing
Kalman gain, and minimizing the influence of noise,
the EKF effectively reduced deviations and improved
position estimates. This process ensured that the final
state estimations closely matched the true trajectory,
enhancing the overall precision and reliability of the
navigation system [33].

The results also demonstrate that sensor fusion (i.e.,
EKF-based fusion) significantly improves localization
accuracy by combining data from multiple sensors,
including GPS, IMU, and odometry, to overcome the
limitations of individual sensors, such as GPS signal
degradation or IMU drift [23][34]. This is particularly
crucial when using low-cost, consumer-grade sensors,
as in this study. While affordable, these sensors have
well-documented  limitations, including lower
precision and higher inherent noise, all of which can
affect the overall accuracy and reliability of the system
[35][36].

These limitations directly impacted the results. The
presence of tall buildings around the test site
introduced multipath effects, causing significant GPS
inaccuracies [7][24]. The consumer-grade IMU likely
experienced considerable drift and noise, especially at
lower velocities. The wunexpected patterns and
inconsistencies observed, particularly the anomalous
performance at velocity 1 and the varying performance
of the KF across repeated trials at the same velocity, can
be attributed to these sensor quality issues and
challenging environmental factors.

The implementation of EKF's primary objective is
to mitigate these issues by fusing the imperfect data
streams. Its superior performance at most velocities
demonstrates that while sensor fusion cannot
completely eliminate the constraints of low-cost
hardware, it is an effective strategy for maximizing their
potential and achieving a more accurate and reliable
localization solution [24][37][38]. Future work would
benefit from testing with higher-grade sensors to
establish a performance baseline and further quantify

the improvement achievable through fusion algorithms.

IV. Conclusion

This study aimed to enhance the localization
accuracy and reliability of PMV in challenging outdoor
environments by fusing data from consumer-grade
GPS, wheel odometry, and IMU sensors, using Kalman

Filter (KF) and Extended Kalman Filter (EKF) methods.

The experimental results show that the EKF
consistently outperforms the standard KF, particularly
at medium to higher velocities (3-5), where EKF

enhances vehicle position accuracy by approximately
29 %, and reduces the maximum deviation to a range of
1.8 m to 2.7 m. EKF-based sensor fusion demonstrates
significant potential. However, the study also revealed
notable limitations. Performance was notably weaker at
lower velocities (1-2), where anomalies suggested that
insufficient torque and the inherent limitations of
consumer-grade IMUs in estimating orientation at
near-zero speeds degraded sensor fusion performance.
Furthermore, multipath effects from nearby tall
buildings introduced substantial GPS noise,
highlighting the vulnerability of relying on consumer-
grade GNSS in urban canyons. For future work, several
aspects for improvement are recommended. First, with
advancements in sensor technology and cost
reductions, incorporating additional sensors like
LiDAR and cameras could provide complementary
data for scan matching and visual odometry, drastically
reducing dependence on error-prone GPS signals, and
can further improve navigation system precision and
reliability. Second, exploring advanced algorithms like
Unscented Kalman Filters (UKF) or Al-driven deep
sensor fusion networks could better handle the non-
linearities and complex noise characteristics of low-cost
sensors. For real-world deployment, scaling this system
presents challenges, including the computational load
of processing data from multiple high-frequency
sensors on embedded hardware. Incorporating more
advanced computational methods is expected to
enhance the efficiency and performance of EKF-based
systems. Moreover, robust calibration procedures
across diverse operating conditions and ensuring
system resilience against unpredictable environmental
factors are also essential for making them suitable for a
wide range of applications, from personal mobility
vehicles to large-scale autonomous transportation
networks.
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