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Abstrak

Pemodelan matematik sebuah pendulum beban bidang yang bergerak di atas frame portal fleksibel ditampilkan
dalam tulisan ini. Persamaan gerak dari sistem yang demikian diperoleh melalui pemodelan frame portal
menggunakan elemen hingga bersamaan dengan metode elemen hingga bergerak dan pendulum beban bidang
menggunakan persamaan Lagrange. Persamaan yang diturunkan menunjukkan adanya kaitan tidak linear antara
dinamika portal frame dan pendulum beban. Teknik integrasi numerik gabungan langsung, yaitu Newmark- dan
Runge-Kutta orde ke-empat selanjutnya digunakan untuk menyelesaikan persamaan gerak yang terkait tersebut.
Beberapa simulasi numerik dilakukan dan hasilnya diverifikasi dengan beberapa perbandingan. Hasilnya
menunjukkan bahwa amplitudo dan frekuensi dari sudut ayunan pendulum beban sangat dipengaruhi oleh
fleksibilitas struktur dan kabel dalam hal kecepatan pembawa beban.

Kata kunci: Pendulum beban, portal framework, metoda elemen hingga bergerak, persamaan Lagrange.

Abstract

Mathematical modeling of a moving planar payload pendulum on elastic portal framework is presented in this
paper. The equations of motion of such a system are obtained by modeling the portal frame using finite element in
conjunction with moving finite element method and moving planar payload pendulum by using Lagrange’s
equations. The generated equations indicate the presence of nonlinear coupling between dynamics of portal
framework and the payload pendulum. The combinational direct numerical integration technique, namely Newmark-
and fourth-order Runge-Kutta method, is then proposed to solve the coupled equations of motion. Several numerical
simulations are performed and the results are verified with several benchmarks. The results indicate that the
amplitude and frequency of the payload pendulum swing angle are greatly affected by flexibility of structure and the
cable in term of carriage speed.

Keywords: Payload Pendulum, Portal Framework, Moving Finite element method, Lagrange’s Equations.

. INTRODUCTION the consequence that the elastic deformability of
The vibrational motion induced by a all elements of the structure cannot be neglected
suspended load moving on flexible structures is [1]. Furthermore, the presence of structural and
one of important vibration problems in variety of cable elasticity is known to exhibit an inherent
engineering systems, such as civil, aerospace and property of vibration when subjected to dynamic
mechanical engineering. Generally, such a loads, leading to crane component or structur_al
system may be found in crane systems which are damage. If the crane system (trolley, hoist
most widely used in factories, warehouses, mechanism, rigging and payload) is taken as a
shipping yards and nuclear facilities. The moving subsystem, then this moving subsystem
constructions of crane’s supporting structure are will induce the crane framework and conversely.
usually designed to have very strong structures They will create bidirectional  dynamic
and big dimension in order to lift and transfer interaction and  constitute nonlinear - coupling
suspended heavy loads. However, as the lifting between crane and its framework, affecting the
capacities become higher, the size of crane motion of each direction to each other.
increases significantly. This condition leads to However, to the best of author’s knowledge,
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this case are limited. Some cited references
related to this paper can be referred in [2]-[7].
Among those references, paper [6] has studied
such a case by introducing the concept of moving
finite element method, but the dynamics of
payload is not introduced in his work and
restricted to rigid cable. He also discussed only
dynamic responses of crane framework.

This paper is addressed to generate
mathematical model of a moving planar payload
pendulum by introducing the flexibility of portal
framework and cable into the model in an effort
to propose a computational technique for
dynamic response prediction by which allow us
to investigate the bidirectional dynamic
interaction between the payload pendulum and
portal framework. Moreover, the proposed
mathematical model can be used for advance
dynamic analysis and basis for controller design.

Il. MATHEMATICAL MODELING OF
SYSTEM

A. System Description

A moving planar payload pendulum on
flexible portal framework is manifestation of a
planar gantry crane. This crane system can be
divided into two subsystems, namely gantry
crane and stationary crane framework. Gantry
crane incorporates interaction among trolley,
wire rope as hoist cable and payload which is
manipulated by trolley and hoist mechanism. The
payload is grabbed using hook system, which is
then hoisted from trolley by means of cable. For
convenience hereafter, trolley is called as
carriage, payload as payload pendulum and crane
framework as a portal frame.

My

(@)

For simplicity of the characteristics of the
physical gantry crane, several assumptions are
put forward to the proposed mathematical model.
Mass of carriage and payload pendulum is
modeled as lumped mass which is connected by
extensible hoist cable. Payload and its cable
behave as pendulum model as depicted in Fig. 1.
Because of its natural characteristic, the angle of
the payload swing has one angle with respect to
the inference frame. 6 is denoted as angle
between the x; -axis and xryr plane as defined by
Fig. 1b. The payload swings either small or large
swing angles. Friction between carriage and the
top beam of portal framework, hoist cable and
drum in hoist system and dynamics of carriage
and hoist drive mechanism are not considered.

The vibration effect of the entire motion
portal framework can be negligible because of
low and constant speed [8]. This assumption
makes its supports can be fixed to the ground.
Structural members of crane framework have
constant cross-sections, materially and
geometrically linear so it is only applicable for
small deformation. Because the portal framework
is classified as a planar frame, the used structural
element is 2D beam element.

B. System Modeling

The equations of motion of the system can be
derived by means of second order of Lagrange’s
equations, showing in eq (1).

i%_%_i_ai—f
dtleg) oq o9 " 1)

q :(UT'VT7XT,9’5)’q :(UT'VT’XT’H.’S)

(b)

Figure 1. Overall system, (a) Finite element model of system, (b) Planar payload pendulum model on flexible portal

framework.
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The first two terms of (= (UT,VT,XT’H, 5) are

defined as the generalized coordinates to describe
the elastic deformation of portal framework in the
two directions and the rest is payload pendulum
motion.

General velocity of the system is
d=(U; .V, %,6,6) The position vector of
carriage vr and payload pendulum r, as shown in
Fig. 1 can be expressed as

ro= (% @) +u(x,t))-i+(He +v(x,t)j (2a)

ro = (X (@) +u(x;,t)+ (¢, +)sin Q)i (2b)
+(He +Vv(x;,t)= (¢, +6)cos )]

Where i, j, and k are unit vectors along the x-, y-,

and z-axis, respectively. For convenience, elastic

displacements in Eq. (2a)-(2b) can be expressed
in terms below.

ur =u(x;,t)=u(xt)|

V; =V(x;,t)=v(x,1)] B )

X=x; *

The term x7 is position of moving carriage along
the span of top beam of portal framework Lg,
which is time-dependent and so are terms ur, vr.
It is seen also that the height of portal framework
He is included either in carriage or payload
pendulum position with respective to the global
coordinate system of portal framework. Referring
to Eq. (2), the flexibility of portal framework ur,
vr and hoist cable () is considered in the position
vector of carriage and payload pendulum. The
flexibility of hoist cable is modeled as one linear
spring with stretched length £ This is sufficient
approach since the cable is assumed to be in
tension during normal crane operation [9]. The
linear spring force of hoist cable is as follows.

Fo=ks=k(t-1,) ()

It is noted that notation k is cable stiffness,

while 4 is unstreched hoist cable. Generalized
force is denoted as f;, namely f, and f, which are
applied input force for the x and y motions,
respectively. Kinetics energy of the system K is
the kinetics energy of carriage and payload
pendulum Kg and portal framework K, defined
as follows,

Ko =Ky +Kp = ¥om 1%+ Ym 1% (52)

ke =] b} (5h)

1 U r ' M r M rur M vy U r
= E l']T M urr M Uruy M Urvr uT '
vl (M, M, M. ||V

vrr VrUp VyVr

The total potential energy of the system P is the
potential energy of gantry carriage and payload
pendulum Pg and portal framework Pg, expressed
as follows,

Ps =P +P- + P
:(mT +mp)gHF +(mT +mp)gvT (6a)

—m,g(¢, +5)cos¢9+}ék52

P =20V [KJU)

U K K K

r rr rurp vy

U, ] (6b)
:E Uy KuTr KuTuT KuTvT Uy

Vr

Ve r VyUy ViVp

Where [M] and [K] are global mass and stiffness
matrices of the portal framework, my and mp are

carriage and payload mass, f, and fr, are
velocity vector carriage and payload pendulum,
which can be obtained the time derivative of r;

and r, . Notation U, and its derivative indicate

vectors of displacements and velocities for the
rest of the degrees of freedom of the portal

framework, while notations (u;,v;) and its

derivative indicate the nodal displacements and
velocities with respect to the position vector of
carriage and payload pendulum.

Notation Fgin Eq. (1) is dissipation function
which can be expressed,

=5 VT )

T

U, Cur Cru-r Crv-|- U-r (7)
=_—qUr CuTr CuTuT CuTvT Ur
VT CVTr C"TUT CVTVT VT

In this paper, structural damping matrix [C] in
Eq. (7) is determined by means of Rayleigh
damping theory.

The Lagrangian L is defined as L=K—P where
K is kinetics energy and P is potential energy of
the system and expressed in Eq. (8).
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L=K-P,
u M M M u

1 r rr ruy vy r
S |
Vol My, M, M|V

vir VrUp VrVy

U7 + V2 + % + 20, %,

+0,207 + 6%+ 5%0° + 20,66

+2(¢, cos 06 +5in 05 + 5 cos OO )k,
+%mp +2(¢, cos 06 +5in 65 + 5 cos B0 )i,
+2(¢, 5in 06— cos 65 + 5sin GO i,

. 2 .2 .2 -
My, M, M., [t +%(mT+meuT+vT+xT+2uTxT)

T (8)
1 Ur Krr KruT KrvT Ur
- E Us KuTr Urlp UpVy Uy
Vy KvT r VrUy VoVr Vy

~(my +m, )gH, —(m; +m_ v, +m g(¢, +5)cos€—%k52

Due to the carriage traverses along the top beam
of portal framework, and assumed that the
moving carriage carrying a planar payload
pendulum modeled as moving lumped mass is
always in contact with the top beam, the axial

(u; ) and vertical (v, ) vibration of the portal
framework are based on position x, and timet of

carriage. The axial (x) and vertical (y)
displacements of portal framework element at
position X, can be obtained as below,

u=N,d, +N,d,, (%a)
v=N,d, +N,d, +Ngd_ +Ngd, (9b)

where d , = (i =1—6)are the displacements for

the nodes of the portal frame element at which
the carriage locates. Thus, the Eqg. (9) can be
rewritten as follows.

u(xt)={N, },1d, } (10a)
v(xt)={N,},1d, }, (100)
Terms N}, u=k=14 and

{N.}, v=k=2356 are shape functions of
2D beam element associated with translation
degrees of freedom in three directions axial (x)

and vertical (y), and terms {dsk }u, {dsk }v are
displacements in two directions.

Derivatives of u(Xx,t) with respect to time t
and position x are in Eq. (11a),

au(x.t) _ Eﬂu(x,t)%Jr au(x.t) at

ot o ot ot ot

=u (x,t)x+u(xt) .
0%u(x.t) _au (x,t)g).“r au (x,t)@x

oz x ot ot ot
+u-(x,t)§+8u(x,t)g+6u(x,t)§ (112)
ot x ot o ot

=u" (x,t)x% + 20" (x,t)x
+u (X, )% +0(x, ).

Derivatives of v(x,t) with respect to time t
and position x are in Eq. (11b),

m@ﬂ_w@0g+m@0g
ot x ot ot o
=V (%, t)x+V(x,t)
awm0:mvﬂ@&+wuﬂgx
ot° ox ot ot ot (1lb)
+v'(x,t)%+ a\./()(’t)%+ ovlx.t)at
ot ox ot ot ot
=V (x,t)%% + 2V (x,t)x

+V (X, U)X +V(x,t).

Due to the carriage moves along a vibrating path,
then Coriolis acceleration will occur as shown in
Eg. (11). An example, Eqg. (11a) is applied to the
general element displacement in Eq. (10a) yields:
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{Nk }{dsk :{Nk"}{dsk }V
{dsk} 8vxt {Nk}

%:{Nk'}{dsk }

oxot

——
o
w
~
<

(12)

This is also applicable for in Eq. (11b), where the
terms {Nk'} and {Nk"} indicate the partial
derivative of shape functions with respect toX.
By substituting Eg. (12) into Eg. (11), an
expression for the acceleration of the carriage,
(ti(x,1),(x,t)), can be obtained,

i(x, t)—(x-mf{ NS

+2 x+xt { } (13b)

+ i, }{ }{usk}u
V(x,t)=(x+ %t) 2{vsk }V{Nk }

+2x+xt V{Nk} (13c)
exiv, | N, }{vsk}

Equation (13) represents the acceleration of the
portal framework in terms of the shape functions,
nodal displacements and the velocity and
acceleration. Further, by deriving L in Eq. (8)
with respect to generalized coordinates and
substituting into Eq. (1) together with Eq. (7), it
yields equations, which derived and summarized
in Eq. (14a)-(14d).

The system matrices in Eq. (14d) are time
variant, with the entries being directly dependent
upon the position of the point mass along the
beam.

(mT +mPXuT +2uT'XT +UTHXT2 +UTVX.T +XT )+
dcosf— 925|n9+95005%
m/,

P 562 sm/ +25€c05/ +6S|n/

(14a)

cosd/ ,ocosd/ |y 4|cosd/ Locosd,
[ %P %PZJT %P fpz
(UT+2uT'XT+uT"XT2+uTXT)+[Si”%P+55i”% zj
)1 o
2
(7, +29, % +VT”>'<T2+V{X'T)+(1+%P) i

256 gsiné gosing
A/ R/

(14b)

SN/ sing/ [ 2o ' oy 2

%P +SIH%P (UT + 25 X+ Uy XT2 +Uy XT)
—COS% (\'/'T+2VT‘XT+vT"XT2+vT'XT)—92+% =0

P P
_60°/ _9c0sb/ kg

EP Ep mP[P

The coupling terms in equation (14a),
m{{Nk}T}{N b amvingTig
{ }{N }and { } }mg are inertial,

Corlolls, centrlfugal force and gravitational load
of moving carriage, respectively, which is time
dependent, and move within the structural
matrices as the moving lumped mass travels from
one element to another. Notations

M| [C, | |K|are the mass, damping and
[ st][ st][ st]

stiffness matrices of the portal framework,
respectively. They are obtained by assembling all
its all element mass and stiffness through the
direct stiffness method, and imposing the
prescribed boundary conditions.

Again, by assuming it is always in contact
with the top beam of portal frame, there will be
transmitted forces to the portal framework from
the swinging payload pendulum through the hoist
cable and contact force at contact point between
the carriage and the top beam of portal frame.
This is exciting forces for the portal frame in the
x and vy directions. The component and
magnitude of these exciting forces are given by
the right side of Eq. (14d). Under assumption that
the crane framework is to be rigid or called rigid
model, vibration in the Eq. (14) is vanished.

(14c)
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—écosawzsing_é&cos%
P

{Nk}uT _(mT + mp)xr +m,lp

—éSin@-ézcogg_éé‘Sin%
N

T P
m./ . .. N +{m; +m
YL _o62cosg/ _206sing/ , Scost e +m,)
‘0, 1, 1,

Equations of motion of the system can be
reduced into classical 2D-pendulum system with
moving pivot point and the results are the same
with Newton’s motion law as presented by Eqg.
(15a)-(15b),

(m; +m, )%, +m ¢(Gcosbcosp—62sing)=f,
(15a)

X7Tcose+é+%sin9=0. (15b)

The damping matrix is assumed proportional to
the combination of mass and stiffness matrices.
Under this assumption, The Rayleigh damping
theory is therefore used. The damping matrices
can be written as,

[Cst ] = a[M total ]"‘ b[KtotaI ]

The proportionality factors is calculated by using

(16a)

damping ratio ¢ =¢,=¢, and natural
frequency o, and o, .
a
I L (16b)
b] w+w,| 1

+66%sing/ _280cosg/ _dsing
1, v, v,

Y

0 0 0 A,
[Msl]+ 0 (mT +mp){Nk}uT{Nk}u 0 Uy
| 0 0 (mT + mp){Nk}vT NG, ]|
[ 0 0 0 A,
(C2e{0 2lm +m, i + 5N, 0 i
e o oo om0
[ 0 0 A,
[0 (e my o3 PINLTRG e (v N ) 0 A
o 0 N (R T T 9
0

(14d)

C. Remarks on the Equations of Motion

Equation (14) calls for some remarks:
1. The term, f is input force or driving force

for the carriage motion while (m; +m, )

is mass total from carriage and payload.
This term is an equivalent lumped mass
which will be moving load in the portal
framework. Position of the lumped mass is
time-variant as reported in [8].

Equations (14a) - (14d) are equations of
motion which represent the coupling
between the dynamics of portal framework
and payload pendulum. Equation (14a)
presents dynamics of carriage motion with
the driving force, while Eqgs. (14b) - (14c)
are dynamics of payload and dynamics of
hoist cable, respectively.

. Carriage acceleration (X, ) appears as

forcing term to the dynamics of payload
pendulum as shown in Egs. (14b) - (14c) if
the carriage motion is prescribed.
There are contributions of axial and
vertical acceleration of portal framework
on the dynamics of payload pendulum.
These contributions provide elastic moving
support for the carriage carrying a payload
pendulum.
. There are effects of Coriolis and
centrifugal forces in Eg. (14a) due to
(m, +mP) moves on deformed portal

framework.
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6. Equations (14a) - (14d) have led to a
system of equations which dynamics of
payload pendulum are dependent on the
dynamics of portal framework and
conversely. The dependency is a
bidirectional coupling, where elastic
support of the payload pendulum motion
offered by vibration of portal framework.
This result is also found by [3] and [5].

I11. NUMERICAL APPROACH

In the condition where the dynamics of
payload pendulum and hoist cable are not
introduced, the swing angle ¢ and hoist cable

displacement & on the right side of equation Eqgs.

(14a)-(14d) will be zero, the case would be
moving load in portal framework, which is
imposed by (mt +mp) load. In order to solve
those equations, the computational scheme under
Newmark- £ and fourth-order Runge-Kutta
method is proposed. The portal framework
displacements are calculated by Newmark-
method. The two parameters are selected as /3
=0.25 and y =0.5, which implies a constant

average  acceleration  with  unconditional
numerical stability, while swing angle of payload
pendulum are calculated by fourth-order Runge-
Kutta method. For each integration step,
Newmark- £ and Runge-Kutta methods are
combined simultaneously to obtain the portal
framework and the payload responses. The
computational procedures with a time step of At
that performs the direct numerical integration can
be summarized as follows:

1. Set initial condition for wvelocity and

acceleration:

al, =lat=0)} {a}, ={at=0)} @7

2. The initial external force vector
{F}O :{F( :0)} is calculated using
right side of Eqg. (8) by using initial
conditions ( 6,6,0 | ¢.¢,¢ and
5,0, 5) of payload.

3. The initial acceleration vector is calculated
as:

o =M I {IF o - [C Ha) - [K Jaj ) (18)

4. Evaluation of constants from ag to a; .The
parameters a; are show in Table 1.

Table 1.
Newmark’s parameters.
1 y 1
0~ 2 17 o a =—=
PAL PAL DAt
a, = 1 1 a,= r_
2p B _ Aty
5 2 ﬂ
a, =Atl-y) a, =yAt

5. The effective stiffness matrix {R} is
calculated as follows.

{K}: [Kst ] + 3 [M total ]+ 4 [Cst ] (19)

6. For each time step:
Equations (6a)-(6¢) are solved to obtain

0,0,6 , 9,94 and 5,5,0 using
fourth-order Runge-Kutta and external
force vector {F }t+At is then updated. The

force vector {F }t+At denotes the external

loads of the system at timet + At .
Equation of motion of the system is
represented as below.

[K]{q }t+At = {If}t+At (20)

The effective load vector {If}is below.

{'E}HAt = {F }HAt + [M total ](aO {q }t + aZ {q }t + a3 {q}t)
(21)

The displacement, velocity and
acceleration responses are computed with
satisfying the following relationships.

{Ahn =K' F o (22)

{q}t+At =a, ({q }t+At - {q }t )_ a, {q }t 8 {q}t (23)

{q }HAt = {q }t + a6 {q}t + a7 {q }HAI (24)

IV. NUMERICAL SIMULATIONS

The cross-section of portal framework is
uniform, isotropic and homogeneous material
properties. The gravitational acceleration is g =
9.81 m/s* and time interval is At = 0.005 s. Portal
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framework is discretized into 20 beam elements:
10 elements for the top beam, the left side-beam
have 2 members with 10 identical elements and
so does the right-side beam. The issue of total
number of elements and nodes will not be treated
as a parameter that will be varied in the
simulations.

A. Moving Load Case
In this subsection, as a test for the mathematical
model in Eq. (14), simulations are performed
under moving load with constant velocity by
setting up the swing angle and hoist cable
displacement & = 6 = 0. It is noted that the
simulation is conducted to primarily attempt to
verify the developed computer program in
tackling moving load case in portal framework.
The dimensions for portal are shown in Table 2.

The portal framework is subjected to a load
moving from the left end to the right end of the
top beam with constant velocity V= 0.75 m/s, m
= 60 kg. Dynamic responses in the axial (X) and
vertical (Y) displacements of central point C, of
the top beam induced by moving force, moving
mass are shown in Fig. 2.

Agreement in fluctuating features of the
associated curve among moving mass, moving

Table 2.
Portal framework dimensions.

force obtained from present code under Matlab®
and ANSYS® are found. In those figures, it is
also seen that besides the vertical responses,
moving loads have significant effect in axial
response compared to their corresponding static
responses.

B. Test for the Mathematical Model

After verification of the developed computer
program, the equations of motion of the system in
Eqg. (14) are tested under some types of driving
forces. The parameters of the overall system are
still exactly the same as those in the Table 2 and
Table 3.

It is noted that that there is no damping either
in dynamics of crane framework or payload,
unless particularly stated. This is expected to
avoid the effect of structural damping in
dynamics of payload and make it a direct
comparison with the pendulum model.

The carriage is moved by bang-bang input
force as driving force. The amplitude and time
switch of driving force are varied to generate
different velocity level of carriage as depicted in
Fig. 3. It is noted that that other forms of driving

Values

Properties Top Beam

Support Top Beam

Young’s Modulus, E 2.10e11 kg/m?

Density, p 7860 kg/m®

Cross-section Area, A 3.45e-2m?  1.51e-2 m?

Span of Framework, Lg 12m

Framework Height, Hg 10.6 m

Table 3.

Payload pendulum parameters.

Parameters Values
Carriage mass, My 50 kg
Payload mass, m 120 kg
Cable length, /p 1m
Stiffness cable, k 2.5e5N/m
Initial angle, 0,,0,,6, 5°,0,0
Initial angle, @,,0,,0, 5°,0,0
Initial cable displacement §,,5,,5, Static, 0, 0

X 10-5
1.5

O Moving mass (Present code)
*  Moving force (Present code)

0.5

-0.5

Axial displacement (m)

15 L L L L L
0 2 4 6 8 10 12
Moving load position (m)

(@)

»
o

N

w
ol

w

I
&l

N

=
&

O Moving mass (Present code) R
*  Moving force (Present code)

Vertical displacement (m)

[

o
&

Static

2 4 6 8 10

Moving load position (m)
(b)

Figure 2. Displacements of the central point C, of the top beam, (a) axial, (b) vertical.

102



Journal of Mechatronics, Electrical Power, and Vehicular Technology

Vol. 02, No 2, pp 95-104, 2011

e-1SSN 2088-6985
p-ISSN 2087-3379

g 500
[}
Q
) %
a )
@ ol
5
: I
8
]
O -500 L . . !
0 5 10 15 20 25
15
E
5
= 10}
(b) 3
o
[o8
(4]
g
]
U 0 1 1 1 1
0 5 10 15 20 25
Time(s)

Figure 3. Time histories of carriage driving force and
position with (—C)lSt driving force, (— —) 2™ driving
force, (- - -) 3" driving force. (a) carriage driving
force, (b) carriage position.

force could have been chosen, but here an
arbitrary form is chosen to primarily attempt to
model the real driving force situation for the
actual crane system.

As a benchmark, rigid model of the system is
used. Rigid model means that the members of
portal framework and hoist cable are rigid and
equivalent with classical pendulum with moving
pivot point. By observing Fig. 4, it can be seen
that flexible model have longer periods or lower
frequencies than the rigid model. The figure

depicts that @ . and 6,4 have a phase shift

over the entire cycles of prescribed time duration.
The phase shift must be caused by the
contribution of flexibility of the portal framework
and hoist cable by providing acceleration in two
directions to the pivot point of payload pendulum
as shown in equations (14a) - (14d). It also may
be observed that magnitude of swing angle of
payload pendulum of flexible model is smaller
than the rigid one, which is similar with work [1]
and [10].

The rigid and flexible model deviation A6 is

shown in Fig. 5, where A0 = 0,1 — 0g - The

deviation between the rigid assumption and the
flexible model results is clearly observed. The
faster the carriage moves, the bigger A0 is.
Further, Fig. 5 shows a beating phenomenon in
the time histories of A6 The beating
phenomenon appears in A9 plot because of the
superimposed plot of the rigid and flexible
response. The deviation between rigid and

0 (deg)

(@)

(b)

0 (deg)

0 (deg)

(©)

Time(s)

Figure 4. Time history of 6 with (—) flexible model,
(- - -) rigid model. (a) 1% driving force, (b) 2" driving
force, (c) 3" driving force.
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Figure 5. Time history of A© with (—) flexible model,
(- - -) rigid model. (a) 1% driving force, (b) 2" driving
force, (c) 3" driving force.

flexible model is also pronounced by spectral
analysis in Table 4 and their statistical properties
in Table 5. Table 4 confirms that swing angles
frequency of flexible model is lower than that of
the rigid model. This is expected since the rigid
model is stiffer than the flexible model. That is
why the stiffer model vibrates at a higher
frequency. It is noted that the linear natural
frequency for swing angles of rigid model are
consistent with the frequency obtained from Egs.
(15a)-(15b).
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Table 4.
Spectral analysis.

Dominant frequency of 8 (Hz)

Model 1driving 2" driving 3" driving
force force force
Rigid 5.38 4.7 4.2
Flexible 2.92 2.7 2.2
Table 5.
Statistics of 0.
st &R nd &R rd 8 R
Statistics 1> driving 2™ driving 3" driving
force force force
*_1.1010% *-3.19¢10* *-4.5610"
Mean ) ) )
o —1.3¢10 0 4,5¢10 0 6.37¢10
*4.4¢10%  *2.82¢10° *1.06¢10"
Skewness ") ) 2
o 3.66¢10 0 4,410 0 6.45¢10
. *1.816 *1.644 *1.273
Kurtosis
o 1.751 o 1.657 o 1.357
* rigid model, = flexible model.
V. CONCLUSION
By applying Lagrange’s approach in

conjunction with finite element method,
equations of motion of a moving planar payload
pendulum on flexible portal framework have
been derived. The equations show that the
payload behaves as a pendulum system with
moving flexible support which undergoes
accelerations in two directions. There is nonlinear
coupling between payload pendulum and portal
framework. If the flexibility of cable and portal
frame are not accounted, then the equations of
motion are greatly simplified as classical
pendulum with moving pivot point the results are
the same with Newton’s motion law.

The effects of elasticity in hoist cable and
portal framework on the dynamics of a moving
planar payload pendulum have been investigated.
It has been shown that the vibration amplitudes
and frequencies are significantly affected. This
paper also recommends that flexibility either
structural members or hoist cable must be
included in the mathematical model for vibration
control design.
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