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Abstrak 
Pemodelan matematik sebuah pendulum beban bidang yang bergerak di atas frame portal fleksibel ditampilkan 

dalam tulisan ini. Persamaan gerak dari sistem yang demikian diperoleh melalui pemodelan frame portal 
menggunakan elemen hingga bersamaan dengan metode elemen hingga bergerak dan pendulum beban bidang 
menggunakan persamaan Lagrange. Persamaan yang diturunkan menunjukkan adanya kaitan tidak linear antara 
dinamika portal frame dan pendulum beban. Teknik integrasi numerik gabungan langsung, yaitu Newmark- dan 
Runge-Kutta orde ke-empat selanjutnya digunakan untuk menyelesaikan persamaan gerak yang terkait tersebut. 
Beberapa simulasi numerik dilakukan dan hasilnya diverifikasi dengan beberapa perbandingan. Hasilnya 
menunjukkan bahwa amplitudo dan frekuensi dari sudut ayunan pendulum beban sangat dipengaruhi oleh 
fleksibilitas struktur dan kabel dalam hal kecepatan pembawa beban. 

 
Kata kunci: Pendulum beban, portal framework, metoda elemen hingga bergerak, persamaan Lagrange. 

Abstract 
Mathematical modeling of a moving planar payload pendulum on elastic portal framework is presented in this 

paper. The equations of motion of such a system are obtained by modeling the portal frame using finite element in 
conjunction with moving finite element method and moving planar payload pendulum by using Lagrange’s 
equations. The generated equations indicate the presence of nonlinear coupling between dynamics of portal 
framework and the payload pendulum. The combinational direct numerical integration technique, namely Newmark- 
and fourth-order Runge-Kutta method, is then proposed to solve the coupled equations of motion. Several numerical 
simulations are performed and the results are verified with several benchmarks. The results indicate that the 
amplitude and frequency of the payload pendulum swing angle are greatly affected by flexibility of structure and the 
cable in term of carriage speed. 

 
Keywords: Payload Pendulum, Portal Framework, Moving Finite element method, Lagrange’s Equations. 

 
I. INTRODUCTION 

The vibrational motion induced by a 
suspended load moving on flexible structures is 
one of important vibration problems in variety of 
engineering systems, such as civil, aerospace and 
mechanical engineering. Generally, such a 
system may be found in crane systems which are 
most widely used in factories, warehouses, 
shipping yards and nuclear facilities. The 
constructions of crane’s supporting structure are 
usually designed to have very strong structures 
and big dimension in order to lift and transfer 
suspended heavy loads. However, as the lifting 
capacities become higher, the size of crane 
increases significantly. This condition leads to 

the consequence that the elastic deformability of 
all elements of the structure cannot be neglected 
[1]. Furthermore, the presence of structural and 
cable elasticity is known to exhibit an inherent 
property of vibration when subjected to dynamic 
loads, leading to crane component or structural 
damage. If the crane system (trolley, hoist 
mechanism, rigging and payload) is taken as a 
moving subsystem, then this moving subsystem 
will induce the crane framework and conversely. 
They will create bidirectional dynamic 
interaction and constitute nonlinear coupling 
between crane and its framework, affecting the 
motion of each direction to each other.  

However, to the best of author’s knowledge, 
the published papers and conferences relate with 

http://dx.doi.org/10.14203/j.mev.2011.v2.95-104


Mathematical Modeling of a Moving Planar Payload Pendulum on Flexible Portal Framework 
(Edwar Yazid) JMEV 02 (2011) 95-104 

  96 

this case are limited. Some cited references 
related to this paper can be referred in [2]-[7]. 
Among those references, paper [6] has studied 
such a case by introducing the concept of moving 
finite element method, but the dynamics of 
payload is not introduced in his work and 
restricted to rigid cable. He also discussed only 
dynamic responses of crane framework.  

This paper is addressed to generate 
mathematical model of a moving planar payload 
pendulum by introducing the flexibility of portal 
framework and cable into the model in an effort 
to propose a computational technique for 
dynamic response prediction by which allow us 
to investigate the bidirectional dynamic 
interaction between the payload pendulum and 
portal framework. Moreover, the proposed 
mathematical model can be used for advance 
dynamic analysis and basis for controller design. 

 
II. MATHEMATICAL MODELING OF 

SYSTEM 
 

A. System Description 
A moving planar payload pendulum on 

flexible portal framework is manifestation of a 
planar gantry crane. This crane system can be 
divided into two subsystems, namely gantry 
crane and stationary crane framework. Gantry 
crane incorporates interaction among trolley, 
wire rope as hoist cable and payload which is 
manipulated by trolley and hoist mechanism. The 
payload is grabbed using hook system, which is 
then hoisted from trolley by means of cable. For 
convenience hereafter, trolley is called as 
carriage, payload as payload pendulum and crane 
framework as a portal frame. 

For simplicity of the characteristics of the 
physical gantry crane, several assumptions are 
put forward to the proposed mathematical model. 
Mass of carriage and payload pendulum is 
modeled as lumped mass which is connected by 
extensible hoist cable. Payload and its cable 
behave as pendulum model as depicted in Fig. 1. 
Because of its natural characteristic, the angle of 
the payload swing has one angle with respect to 
the inference frame. θ is denoted as angle 
between the xT -axis and xTyT plane as defined by 
Fig. 1b. The payload swings either small or large 
swing angles. Friction between carriage and the 
top beam of portal framework, hoist cable and 
drum in hoist system and dynamics of carriage 
and hoist drive mechanism are not considered. 

The vibration effect of the entire motion 
portal framework can be negligible because of 
low and constant speed [8]. This assumption 
makes its supports can be fixed to the ground. 
Structural members of crane framework have 
constant cross-sections, materially and 
geometrically linear so it is only applicable for 
small deformation. Because the portal framework 
is classified as a planar frame, the used structural 
element is 2D beam element. 

 
B. System Modeling 

The equations of motion of the system can be 
derived by means of second order of Lagrange’s 
equations, showing in eq (1). 
 

( ) ( ).,,,,,,,,

,

, δθδθ 



TTTTTT

i
R

xvuqxvuq

f
q

F
q
L

q
L

dt
d

==

=
∂
∂

+
∂
∂

−







∂
∂

 (1) 

 
 
 

Y  

X  

BL  

FH  

pc  

θ  

Tm  

Pm  

  

k  

xf  

 
(a) 

 

  
θ  

Tm  

pm  

Tu
 

Tv  

TY  

TX  

k  

xf  

Tx  

 
(b) 

 
Figure 1. Overall system, (a) Finite element model of system, (b) Planar payload pendulum model on flexible portal 
framework. 
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The first two terms of ( )δθ ,,, ,TTT xvuq =  are 
defined as the generalized coordinates to describe 
the elastic deformation of portal framework in the 
two directions and the rest is payload pendulum 
motion. 

General velocity of the system is 
( ).,,,, δθ  TTT xvuq =  The position vector of 

carriage vT and payload pendulum rp as shown in 
Fig. 1 can be expressed as 
 

( )( ) ( )( ) jtxvHitxutxr TFTTT ,,)( ++⋅+=  (2a) 
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Where i, j, and k are unit vectors along the x-, y-, 
and z-axis, respectively. For convenience, elastic 
displacements in Eq. (2a)-(2b) can be expressed 
in terms below. 
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The term xT is position of moving carriage along 
the span of top beam of portal framework LB, 
which is time-dependent and so are terms uT, vT. 
It is seen also that the height of portal framework 
HF is included either in carriage or payload 
pendulum position with respective to the global 
coordinate system of portal framework. Referring 
to Eq. (2), the flexibility of portal framework uT, 
vT and hoist cable (δ) is considered in the position 
vector of carriage and payload pendulum. The 
flexibility of hoist cable is modeled as one linear 
spring with stretched length l. This is sufficient 
approach since the cable is assumed to be in 
tension during normal crane operation [9]. The 
linear spring force of hoist cable is as follows. 
 

( ).pk kkF  −== δ   (4) 
 
It is noted that notation k  is cable stiffness, 
while lP is unstreched hoist cable. Generalized 
force is denoted as fi, namely fx and fy which are 
applied input force for the x and y motions, 
respectively. Kinetics energy of the system K is 
the kinetics energy of carriage and payload 
pendulum KG and portal framework KF, defined 
as follows, 
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The total potential energy of the system P is the 
potential energy of gantry carriage and payload 
pendulum PG and portal framework PF, expressed 
as follows, 
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Where [M] and [K] are global mass and stiffness 
matrices of the portal framework, mT  and mP are 
carriage and payload mass, Tr  and Pr  are 
velocity vector carriage and payload pendulum, 
which can be obtained the time derivative of Tr  
and Pr . Notation Ur and its derivative indicate 
vectors of displacements and velocities for the 
rest of the degrees of freedom of the portal 
framework, while notations ( )TT vu ,  and its 
derivative indicate the nodal displacements and 
velocities with respect to the position vector of 
carriage and payload pendulum.  

Notation RF in Eq. (1) is dissipation function 
which can be expressed,  
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In this paper, structural damping matrix [ ]C  in 
Eq. (7) is determined by means of Rayleigh 
damping theory.  

The Lagrangian L is defined as L=K–P where 
K is kinetics energy and P is potential energy of 
the system and expressed in Eq. (8). 
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Due to the carriage traverses along the top beam 
of portal framework, and assumed that the 
moving carriage carrying a planar payload 
pendulum modeled as moving lumped mass is 
always in contact with the top beam, the axial 
( )Tu and vertical ( )Tv vibration of the portal 
framework are based on position Tx  and time t  of 
carriage. The axial (x) and vertical (y) 
displacements of portal framework element at 
position x, can be obtained as below, 
 

441 1 ss dNdNu +=  (9a) 
 

653\2 6532 ssss dNdNdNdNv +++=   (9b) 
 
where ( )61−== id is are the displacements for 
the nodes of the portal frame element at which 
the carriage locates. Thus, the Eq. (9) can be 
rewritten as follows.  
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Terms { } 4,1== kuN uk  and 
{ } 6,5,3,2== kvN vk  are shape functions of 
2D beam element associated with translation 
degrees of freedom in three directions axial ( )x  
and vertical ( )y , and terms { }

usk
d , { }

vsk
d  are 

displacements in two directions.  

Derivatives of ( )txu ,  with respect to time t  
and position x  are in Eq. (11a), 
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Derivatives of ( )txv ,  with respect to time t 

and position x are in Eq. (11b),  
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Due to the carriage moves along a vibrating path, 
then Coriolis acceleration will occur as shown in 
Eq. (11). An example, Eq. (11a) is applied to the 
general element displacement in Eq. (10a) yields: 
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This is also applicable for in Eq. (11b), where the 
terms { }'kN and { }''kN  indicate the partial 
derivative of shape functions with respect to x . 
By substituting Eq. (12) into Eq. (11), an 
expression for the acceleration of the carriage, 

( ) ( )( )txvtxu ,,,  , can be obtained, 
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Equation (13) represents the acceleration of the 
portal framework in terms of the shape functions, 
nodal displacements and the velocity and 
acceleration. Further, by deriving L  in Eq. (8) 
with respect to generalized coordinates and 
substituting into Eq. (1) together with Eq. (7), it 
yields equations, which derived and summarized 
in Eq. (14a)-(14d).  

The system matrices in Eq. (14d) are time 
variant, with the entries being directly dependent 
upon the position of the point mass along the 
beam.  
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The coupling terms in equation (14a), 

{ }{ }{ }k
T

k NNm , { }{ }{ }'2 k
T

k NNmV , 

{ }{ }{ }''2
k

T
k NNmV  and { }{ }mgN T

k are inertial, 
Coriolis, centrifugal force and gravitational load 
of moving carriage, respectively, which is time 
dependent, and move within the structural 
matrices as the moving lumped mass travels from 
one element to another. Notations
[ ] [ ] [ ]ststst KCM ,, are the mass, damping and 
stiffness matrices of the portal framework, 
respectively. They are obtained by assembling all 
its all element mass and stiffness through the 
direct stiffness method, and imposing the 
prescribed boundary conditions.  

Again, by assuming it is always in contact 
with the top beam of portal frame, there will be 
transmitted forces to the portal framework from 
the swinging payload pendulum through the hoist 
cable and contact force at contact point between 
the carriage and the top beam of portal frame. 
This is exciting forces for the portal frame in the 
x and y directions. The component and 
magnitude of these exciting forces are given by 
the right side of Eq. (14d). Under assumption that 
the crane framework is to be rigid or called rigid 
model, vibration in the Eq. (14) is vanished. 
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Equations of motion of the system can be 
reduced into classical 2D-pendulum system with 
moving pivot point and the results are the same 
with Newton’s motion law as presented by Eq. 
(15a)-(15b), 
 

( ) ( ) xpTpT fmxmm =−++ θθϕθθ sincoscos 2

  (15a) 
 

.0sincos =++ θθθ





 gxT  (15b)  

 
The damping matrix is assumed proportional to 
the combination of mass and stiffness matrices. 
Under this assumption, The Rayleigh damping 
theory is therefore used. The damping matrices 
can be written as, 
 

[ ] [ ] [ ]totaltotalst KbMaC +=   (16a) 
 
The proportionality factors is calculated by using 
damping ratio 21 ζζζ ==  and natural 
frequency 1ω and 2ω . 
 

,
1

2 21

21 







+
=







 ωω

ωω
ζ

b
a

  (16b)  

 

C. Remarks on the Equations of Motion 
Equation (14) calls for some remarks: 
1. The term, xf is input force or driving force 

for the carriage motion while ( )PT mm +  
is mass total from carriage and payload. 
This term is an equivalent lumped mass 
which will be moving load in the portal 
framework. Position of the lumped mass is 
time-variant as reported in [8].  

2. Equations (14a) - (14d) are equations of 
motion which represent the coupling 
between the dynamics of portal framework 
and payload pendulum. Equation (14a) 
presents dynamics of carriage motion with 
the driving force, while Eqs. (14b) - (14c) 
are dynamics of payload and dynamics of 
hoist cable, respectively. 

3. Carriage acceleration ( )Tx  appears as 
forcing term to the dynamics of payload 
pendulum as shown in Eqs. (14b) - (14c) if 
the carriage motion is prescribed. 

4. There are contributions of axial and 
vertical acceleration of portal framework 
on the dynamics of payload pendulum. 
These contributions provide elastic moving 
support for the carriage carrying a payload 
pendulum. 

5. There are effects of Coriolis and 
centrifugal forces in Eq. (14a) due to 
( )PT mm + moves on deformed portal 
framework.  
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6. Equations (14a) - (14d) have led to a 
system of equations which dynamics of 
payload pendulum are dependent on the 
dynamics of portal framework and 
conversely. The dependency is a 
bidirectional coupling, where elastic 
support of the payload pendulum motion 
offered by vibration of portal framework. 
This result is also found by [3] and [5].  

 
III. NUMERICAL APPROACH 

In the condition where the dynamics of 
payload pendulum and hoist cable are not 
introduced, the swing angle θ  and hoist cable 
displacement δ  on the right side of equation Eqs. 
(14a)-(14d) will be zero, the case would be 
moving load in portal framework, which is 
imposed by ( )Pt mm + load. In order to solve 
those equations, the computational scheme under 
Newmark- β and fourth-order Runge-Kutta 
method is proposed. The portal framework 
displacements are calculated by Newmark- β  
method. The two parameters are selected as β
=0.25 and γ =0.5, which implies a constant 
average acceleration with unconditional 
numerical stability, while swing angle of payload 
pendulum are calculated by fourth-order Runge-
Kutta method. For each integration step, 
Newmark- β  and Runge-Kutta methods are 
combined simultaneously to obtain the portal 
framework and the payload responses. The 
computational procedures with a time step of t∆  
that performs the direct numerical integration can 
be summarized as follows:  

1. Set initial condition for velocity and 
acceleration: 

 
{ } ( ){ }00 == tqq  ,{ } ( ){ }00 == tqq    (17) 

 
2. The initial external force vector 

{ } ( ){ }00 == tFF  is calculated using 
right side of Eq. (8) by using initial 

conditions ( θθθ ,, , ϕϕϕ ,,  and 

δδδ ,, ) of payload.  
3. The initial acceleration vector is calculated 

as:  
 
{ } [ ] { } [ ]{ } [ ]{ }{ }000

1
0 qKqCFMq ststtotal −−= −      (18)  

 
4. Evaluation of constants from a0 to a7 .The 

parameters  ai are show in Table 1. 

Table 1. 
Newmark’s parameters. 

20
1
t

a
∆

=
β

 t
a

∆
=
β
γ

1  t
a

∆
=
β
1

2  

 

1
2
1

3 −=
β

a  14 −=
β
γa

 







−

∆
= 2

25 β
γta

 ( )γ−∆= 16 ta
 

ta ∆= γ7  

 
5. The effective stiffness matrix { }K  is 

calculated as follows.  
 
{ } [ ] [ ] [ ]st1total0st CaMaKK ++=   (19)  
 

6. For each time step: 
Equations (6a)-(6c) are solved to obtain

θθθ ,, , ϕϕϕ ,, and δδδ ,,  using 
fourth-order Runge-Kutta and external 
force vector { } ttF ∆+ is then updated. The 

force vector { } ttF ∆+ denotes the external 
loads of the system at time tt ∆+ . 
Equation of motion of the system is 
represented as below. 
 
[ ]{ } { } tttt FqK ∆+∆+ =   (20) 
 

The effective load vector{ }F is below.  
 
{ } { } [ ] { } { } { }( )ttttotaltttt qaqaqaMFF  320 +++= ∆+∆+

 (21) 
 
The displacement, velocity and 
acceleration responses are computed with 
satisfying the following relationships. 
 
{ } [ ] { } tttt FKq ∆+

−
∆+ = 1  (22) 

 
{ } { } { }( ) { } { }ttttttt qaqaqqaq  320 −−−= ∆+∆+  (23) 
 
{ } { } { } { } tttttt qaqaqq ∆+∆+ ++=  76  (24)  
 

IV. NUMERICAL SIMULATIONS 
The cross-section of portal framework is 

uniform, isotropic and homogeneous material 
properties. The gravitational acceleration is g = 
9.81 m/s2 and time interval is Δt = 0.005 s. Portal 
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framework is discretized into 20 beam elements: 
10 elements for the top beam, the left side-beam 
have 2 members with 10 identical elements and 
so does the right-side beam. The issue of total 
number of elements and nodes will not be treated 
as a parameter that will be varied in the 
simulations. 

 
A. Moving Load Case 
In this subsection, as a test for the mathematical 
model in Eq. (14), simulations are performed 
under moving load with constant velocity by 
setting up the swing angle and hoist cable 
displacement θ = δ = 0. It is noted that the 
simulation is conducted to primarily attempt to 
verify the developed computer program in 
tackling moving load case in portal framework. 
The dimensions for portal are shown in Table 2. 

The portal framework is subjected to a load 
moving from the left end to the right end of the 
top beam with constant velocity V= 0.75 m/s, m 
= 60 kg. Dynamic responses in the axial (X) and 
vertical (Y) displacements of central point Cp of 
the top beam induced by moving force, moving 
mass are shown in Fig. 2. 

Agreement in fluctuating features of the 
associated curve among moving mass, moving  
 
Table 2. 
Portal framework dimensions. 

Properties 
Values 

Top Beam 
Support Top Beam 

Young’s Modulus, E  2.10e11 kg/m2 

Density, ρ  7860 kg/m3 

Cross-section Area, A  3.45e-2 m2 1.51e-2 m2 

Span of Framework, BL   12 m 

Framework Height, FH  10.6 m 

 

force obtained from present code under Matlab® 

and ANSYS® are found. In those figures, it is 
also seen that besides the vertical responses, 
moving loads have significant effect in axial 
response compared to their corresponding static 
responses. 

 
B. Test for the Mathematical Model 

After verification of the developed computer 
program, the equations of motion of the system in 
Eq. (14) are tested under some types of driving 
forces. The parameters of the overall system are 
still exactly the same as those in the Table 2 and 
Table 3.  

It is noted that that there is no damping either 
in dynamics of crane framework or payload, 
unless particularly stated. This is expected to 
avoid the effect of structural damping in 
dynamics of payload and make it a direct 
comparison with the pendulum model. 

The carriage is moved by bang-bang input 
force as driving force. The amplitude and time 
switch of driving force are varied to generate 
different velocity level of carriage as depicted in 
Fig. 3. It is noted that that other forms of driving  
 
Table 3. 
Payload pendulum parameters. 
Parameters  Values 

Carriage mass, Tm  50 kg 

Payload mass, pm  120 kg 

Cable length, P  1 m 

Stiffness cable, k  2.5e5 N/ m 

Initial angle, 00 θθθ  ,,o  5°, 0, 0 

Initial angle, ooo ,, ϕϕϕ    5°, 0, 0 

Initial cable displacement ooo ,, δδδ   Static, 0, 0 
 

 
(a) 

 
(b) 

 
Figure 2. Displacements of the central point Cp of the top beam, (a) axial, (b) vertical. 

0 2 4 6 8 10 12
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-5

Moving load position (m)

A
xi

al
 d

is
pl

ac
em

en
t (

m
)

 

 
Moving mass (Present code)
Moving force (Present code)
ANSYS
Static

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-5

Moving load position (m)

V
er

tic
al

 d
is

pl
ac

em
en

t (
m

)

 

 

Moving mass (Present code)
Moving force (Present code)
ANSYS
Static



Journal of Mechatronics, Electrical Power, and Vehicular Technology e-ISSN 2088-6985 
Vol. 02, No 2, pp 95-104, 2011 p-ISSN 2087-3379 

 103 

 

 
Figure 3. Time histories of carriage driving force and 
position with (—)1st driving force, (— —) 2nd driving 
force, (- - -) 3rd driving force. (a) carriage driving 
force, (b) carriage position. 

 

 
Figure 4. Time history of θwith (—) flexible model,  
(- - -) rigid model. (a) 1st driving force, (b) 2nd driving 
force, (c) 3rd driving force.  

 
force could have been chosen, but here an 
arbitrary form is chosen to primarily attempt to 
model the real driving force situation for the 
actual crane system. 

As a benchmark, rigid model of the system is 
used. Rigid model means that the members of 
portal framework and hoist cable are rigid and 
equivalent with classical pendulum with moving 
pivot point. By observing Fig. 4, it can be seen 
that flexible model have longer periods or lower 
frequencies than the rigid model. The figure 
depicts that flexibleθ  and rigidθ have a phase shift 
over the entire cycles of prescribed time duration. 
The phase shift must be caused by the 
contribution of flexibility of the portal framework 
and hoist cable by providing acceleration in two 
directions to the pivot point of payload pendulum 
as shown in equations (14a) - (14d). It also may 
be observed that magnitude of swing angle of 
payload pendulum of flexible model is smaller 
than the rigid one, which is similar with work [1] 
and [10].  

The rigid and flexible model deviation θ∆ is 
shown in Fig. 5, where rigidflexible θθθ −=∆ . The 
deviation between the rigid assumption and the 
flexible model results is clearly observed. The 
faster the carriage moves, the bigger θ∆ is. 
Further, Fig. 5 shows a beating phenomenon in 
the time histories of θ∆ . The beating 
phenomenon appears in θ∆  plot because of the 
superimposed plot of the rigid and flexible 
response. The deviation between rigid and 
 

 
Figure 5. Time history of θ∆  with (—) flexible model, 
(- - -) rigid model. (a) 1st driving force, (b) 2nd driving 
force, (c) 3rd driving force.  
 
 
flexible model is also pronounced by spectral 
analysis in Table 4 and their statistical properties 
in Table 5. Table 4 confirms that swing angles 
frequency of flexible model is lower than that of 
the rigid model. This is expected since the rigid 
model is stiffer than the flexible model. That is 
why the stiffer model vibrates at a higher 
frequency. It is noted that the linear natural 
frequency for swing angles of rigid model are 
consistent with the frequency obtained from Eqs. 
(15a)-(15b). 
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Table 4. 
Spectral analysis. 

Model 
Dominant frequency of θ (Hz) 

1st driving 
force 

2nd driving 
force 

3rd driving 
force 

Rigid 5.38 4.7 4.2 
Flexible 2.92 2.7 2.2 
 
Table 5. 
Statistics of θ. 

Statistics 1st driving 
force 

2nd driving 
force 

3rd driving 
force 

Mean 
* –1.1•10-3 * –3.19•10-4 * –4.56•10-4 
¤ –1.3•10-3 ¤ 4.5•10-4 ¤ 6.37•10-4 

Skewness 
* 4.4•10-2 * 2.82•10-2 * 1.06•10-1 
¤ 3.66•10-2 ¤ 4.4•10-2 ¤ 6.45•10-2 

Kurtosis 
* 1.816 * 1.644 * 1.273 
¤ 1.751 ¤ 1.657 ¤ 1.357 

* rigid model, ¤ flexible model. 
 

V. CONCLUSION 
By applying Lagrange’s approach in 

conjunction with finite element method, 
equations of motion of a moving planar payload 
pendulum on flexible portal framework have 
been derived. The equations show that the 
payload behaves as a pendulum system with 
moving flexible support which undergoes 
accelerations in two directions. There is nonlinear 
coupling between payload pendulum and portal 
framework. If the flexibility of cable and portal 
frame are not accounted, then the equations of 
motion are greatly simplified as classical 
pendulum with moving pivot point the results are 
the same with Newton’s motion law. 

The effects of elasticity in hoist cable and 
portal framework on the dynamics of a moving 
planar payload pendulum have been investigated. 
It has been shown that the vibration amplitudes 
and frequencies are significantly affected. This 
paper also recommends that flexibility either 
structural members or hoist cable must be 
included in the mathematical model for vibration 
control design. 
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