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Abstract 
Analysis of algorithms to determine the accuracy of aiming direction using two inverse kinematic approaches i.e. 

geometric and numeric has been done. The best method needs to be specified to precisely and accurately control the 
aiming direction of a two degrees of freedom (TDOF) manipulator. The manipulator degrees of freedom are azimuth 
(Az) and elevation (El) angles. A program has been made using C language to implement the algorithm. Analysis of 
the two algorithms was done using statistical approach and circular error probable (CEP). The research proves that 
accuracy percentage of numerical method is better than geometrical method, those are 98.63% and 98.55%, 
respectively. Based on the experiment results, the numerical approach is the right algorithm to be applied in the 
TDOF robot manipulator. 

 
Keywords: azimuth; elevation; geometrical; numerical; C language. 

 
I. INTRODUCTION 

Two degrees of freedom (TDOF) manipulator 
is a device that makes a modern instrument more 
convenient to be operated. Modern TDOF robot 
manipulator has been equipped with object 
detection and identifies features using certain 
sensors, such as acoustic sensors and visual 
sensors. In the study conducted by Mirdanies [1], 
object detection and identification was performed 
using KinectTM camera with sift and surf methods. 

Visual sensors and algorithm are used to 
convert the coordinates of the target to the aiming 
direction which is the key to this technology. The 
algorithm will determine the accuracy and 
precision of the TDOF manipulator aiming 
direction. The formula of this algorithm is closely 
associated with the forward and inverse 
kinematic as in the science of robotics [2]. 
Inverse kinematic can be completed with two 
common approaches, i.e. geometrical and 
numerical [3, 4] approaches. Robotic or 
mechatronic systems that use high-speed 
processing devices can use the numerical 

approach through an iterative process of Jacobian 
matrix for the inverse kinematic solution [5, 6]. 
Research on inverse kinematic via geometrical 
and numerical approach has been done by Feng 
[7] for PUMA 560, but the accuracy and 
precision issues are not discussed in detail. 
Especially for inverse kinematic via numerical 
approach, Tchon [8] has applied it to the 
stationary manipulators and mobile robots. In the 
numerical approach undertaken by Soch [9], the 
extended Jacobian technique has been compared 
with the inverse Jacobian. KinectTM is used as a 
visual sensor in this study. It is placed on a fixed 
base so that coordinate transformation from a 
position of the manipulator is to be derived using 
the Denavit-Hartenberg (DH) notation [2]. 

This study aims to analyze the effect of using 
geometrical and numerical approaches to the 
accuracy and precision of a TDOF robot 
manipulator aiming direction. 

 
II. HOMOGENEOUS 

TRANSFORMATION MATRIX 
Figure 1 illustrates coordinates system of the 

camera, the TDOF manipulator, and the pointed 
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direction of a specific target. Homogeneous 
transformation matrix of the camera can be 
written in the form of ZYX Euler representation 
( Rα,β,γB
A )  in combination with the translational 

vector [2]. Assuming that there is no change in 
orientation ( α = β = γ = 0 ) and there is only 
translation along the X-axis (∆x), Y-axis (-∆y ), 
and Z-axis ( ∆z ) the homogeneous camera 
transformation Tc can be written as Equation (1). 

𝑇𝑇𝐶 = �

1 0 0 ∆x
0 1 0 −∆y
0 0 1 ∆z
0 0 0 1

� (1) 

Based on direct measurements in the 
mechanism, it is known that  ∆x value is 26.5 cm, 
∆y is 1.25 cm, and ∆z is 0 cm. The TDOF robot 
manipulator parameters in the DH notation [2] 
can be seen in Table 1. These parameters are 
used to calculate the coordinates of each point 
based on homogeneous transformations in 
Equation (2). The calculation results of each link 
are shown by Equation (3) and Equation (4). 
Homogeneous transformation matrix of the 
manipulator from the tip relative to the base 
coordinates can be seen in Equation (5). 

𝑇𝑇𝑚𝑖
𝑖−1 = �

𝑐 𝜃𝑖 − 𝑠 𝜃𝑖 𝑐 𝛼𝑖 𝑠 𝜃𝑖 𝑠 𝛼𝑖 𝑎𝑖 𝑐 𝜃𝑖
𝑠 𝜃𝑖 𝑐 𝜃𝑖 𝑐 𝛼𝑖 − 𝑐 𝜃𝑖 𝑠 𝛼𝑖 𝑎𝑖 𝑠 𝜃𝑖

0 𝑠 𝛼𝑖 𝑐 𝛼𝑖 𝑑𝑑𝑖
0 0 0 1

�(2) 

𝑇𝑇𝑚1
0 = �

𝑐 𝜃1 0 𝑠 𝜃1 0
𝑠 𝜃1 0 −𝑐 𝜃1 0

0 1 0 𝑑𝑑1
0 0 0 1

� (2) 

𝑇𝑇21 𝑚 = �

𝑐 𝜃2 − 𝑠 𝜃2 0 𝑎2 𝑐 𝜃2
𝑠 𝜃2 𝑐 𝜃2 0 𝑎2 𝑠 𝜃2

0 0 1 0
0 0 0 1

� (3) 

 

𝑇𝑇𝑚2
0 =

�

𝑐 𝜃1 𝑐 𝜃2 − 𝑐 𝜃1 𝑠 𝜃2 𝑠 𝜃1 𝑎2 𝑐 𝜃1 𝑐 𝜃2
𝑠 𝜃1 𝑐 𝜃2 − 𝑠 𝜃1 𝑠 𝜃2 − 𝑐 𝜃1 𝑎2 𝑠 𝜃1 𝑐 𝜃2
𝑠 𝜃2 𝑐 𝜃2 0 𝑑𝑑1 + 𝑎2 𝑠 𝜃2

0 0 0 1

� (4) 

where 𝑠 𝜃1 = sin𝜃1 , 𝑐 𝜃1 = cos 𝜃1 , 𝑠 𝜃2 = sin𝜃2 , 
and 𝑐 𝜃2 = cos 𝜃2 . 𝑑𝑑1  represents length of link 1, 
and 𝑎2  is length of link 2. Based on 
measurements, it is known that d1 is 34.25 cm, 
whereas 𝑎2 is 40 cm. 

The targets are assumed to be simply a 
translation along the X-axis (Lx), thus 
homogeneous transformation matrix of the target 
referred to the tip of the link 2 can be written as 
Equation (6). 

𝑇𝑇𝑇 = �

1 0 0 𝐿𝑥
0 1 0 0
0 0 1 0
0 0 0 1

� (5) 

The total homogeneous transformation matrix 
is obtained by multiplying homogeneous 
transformation matrix of the  camera, the 
manipulator, and the target matrix as follows: 

𝑇𝑇 =  𝑇𝑇𝐶 ∗ 𝑇𝑇𝑚2
0 ∗ 𝑇𝑇𝑇 = �𝑅𝑅 𝑃𝑃

0 1� (6) 

where 

𝑅𝑅 = �
𝑛𝑥 𝑠𝑥 𝑎𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦
𝑛𝑧 𝑠𝑧 𝑎𝑧

� =

�
𝑐 𝜃1 𝑐 𝜃2 − 𝑐 𝜃1 𝑠 𝜃2 𝑠 𝜃1
𝑠 𝜃1 𝑐 𝜃2 − 𝑠 𝜃1 𝑠 𝜃2 − 𝑐 𝜃1
𝑠 𝜃2 𝑐 𝜃2 0

� (7) 
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Figure 1. Coordinates system of camera, TDOF manipulator, and target point 

Table 1. 
TDOF robot manipulator parameters 

Link - i αi ai di θi 
1 π/2 0 d1 θ1 
2 0 a2 0  θ2 
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𝑃𝑃 = �
(𝑎2 + 𝐿𝑥)  𝑐 𝜃1 𝑐 𝜃2
(𝑎2 + 𝐿𝑥)   𝑠 𝜃1 𝑐 𝜃2
𝑑𝑑1 + (𝑎2 + 𝐿𝑥)  𝑠 𝜃1

� + �
∆𝑥
−∆𝑦
∆𝑧

� (8) 

 
III. INVERSE KINEMATICS 

Coordinates system of the camera, as shown 
in Figure 1, the object being detected by the 
camera is expressed in the camera coordinate 
system as [kx, ky, kz]. In the camera coordinate 
system, Z-axis forms a straight line between the 
camera and the object, and kz represents the 
distance between them in Z-axis. Therefore, the 
coordinates of the object in the DH-coordinate 
system is given by the following equation: 

𝑃𝑃𝑑 = �
𝑃𝑃𝑥
𝑃𝑃𝑦
𝑃𝑃𝑧
� = �

�𝑘𝑧2 − 𝑘𝑦2 − 𝑘𝑥2 + ∆𝑥
𝑘𝑥 − ∆𝑦
𝑘𝑦 + ∆𝑧

� (9) 

 
A. Geometrical Approach 

Figure 2 illustrates coordinates system which 
is used to derive inverse kinematics using 
geometrical approach. From trigonometric 
formula, the following equations are obtained [3]. 

�

θ1 = tan−1 �Py
Px
�

θ2 = tan−1 �z
r
� = tan−1 � Pz− 𝑑1

�Px2+Py2
�
⎭
⎪
⎬

⎪
⎫

 (10) 

where θ1 is a rotation of joint on the horizontal 
plane which is called azimuth angle, θ2  is a 
rotation of joint on the vertical plane which is 
called elevation angle, (Px, Py, Pz) is the target 
coordinates relative to the manipulator base 
coordinate, and (d1, a2) is the length of the link 1 
and link 2, respectively. 

The distance L from the second joint to the 
target can be calculated as follows: 

𝐿 = 𝑎2 + 𝐿𝑥 = �P𝑥2 + P𝑦2 + (P𝑧 − 𝑑𝑑1)2 (11) 

 
B. Numerical Approach 

The algorithm of numerical approach is 
carried out through iteration process using 
pseudo-inverse Jacobian matrix [1] as Figure 3. 

 
IV. ACCURACY MEASUREMENT 

In general, imprecise measurement is 
associated with random errors while the 
inaccurate measurement is associated with 
systematic errors. Good aiming results will have 
small systematic and random errors, and vice 
versa. Systematic errors values are expressed by 
the difference between the average results of the 
aim with the midpoint of the target value, while 
the random errors value is determined by the 
value of the standard deviation from the results of 
the aim [10]. 

Data can be analyzed under the assumption 
Gaussian (normal) distribution and independent 
of each other [11]. Gaussian is a distribution of 
data whose characteristics matches a probability 
density function (PDF) with average (mean) µ 
and variance σ2. Experiment results are data sets 
of points in the horizontal axis (x) and the 
vertical axis (y) in a window area generated by a 
laser pointer. 

Once the impact point distribution has been 
assumed to be normal and independent in both 
dimensions, the dispersion of aiming points can 
be described using the circular error probable 
(CEP) [12, 13, 14, 15]. The CEP is often used to 
measure the level of accuracy in many 
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Figure 2. Geometrical approach coordinates 
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applications [12]. CEP is defined as the radius r 
of a circle, centered on the target, which includes 
50% of the aiming points [13, 15]. Estimation of 
CEP is based on means and standard deviations 

[13]. The use of CEP must meet four criteria: 
independence, normality, circular distribution, 
and mean point of impact (MPI) at the target. 
These criteria can be determined based on the 
general statistical tests.  

Independence and MPI use the Student-test, 
normality using the Lillifors test, and circular 
distribution using the F-Test. In the aim results 
that have sampled the standard deviation of the 
two coordinate axes, the CEP is calculated using 
Equation (13) [12]. 

𝐶𝐸𝑃𝑃 =

�
(0.820𝑘 − 0.007)𝜎𝑠 + 0.675𝜎𝑙 𝑘 < 0.3
0.615𝜎𝑠  +  0.564𝜎𝑙 𝑘 ≥ 0.3
1.177𝜎 𝑘 = 1

� (12) 

where 𝑘  is 𝜎𝑠/𝜎𝑙 , 𝜎𝑠  is the smaller standard 
deviation, 𝜎𝑙 is the larger standard deviation, and 
𝜎 is 𝜎𝑥 or 𝜎𝑦.  

In this paper, accuracy e is expressed in the 
form of a percentage of accuracy level according 
to Equation (14). 

e % = �1 − 𝛽
𝐴
� × 100% (13) 

where 𝛽  is radius of systematic error ( 𝛽 =
��̅� + 𝑦�) and A is maximum radius of aiming area. 
 
V. EXPERIMENTAL SET-UP 

The experimental set up is illustrated in 
Figure 4 and its working principle is shown in 
Figure 5. The target trajectory is represented by a 
linear and sinusoidal line input to produce 
movement of azimuth and elevation angles. It is 
given by the following equations: 

�𝑋𝑖 = 𝑋𝑖−1 + 20, for 20 ≤  𝑋𝑖  ≤  640
𝑌𝑖 = 𝐴𝑦 sin�2𝜋𝑓𝑋𝑖 + 𝜙𝑦� + 𝑏 � (14) 

where Xi and Xi-1 are horizontal pixels along X-axis, 
Yi is vertical pixel along Y-axis, Ay is sinusoidal 
gain, f is frequency, and b is offset. 

 
Figure 3. Numerical approach 
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⎤

 

J = �
𝑅𝑅 zeros(3,3)

zeros(3,3) R 
� J 

𝐞𝐞 = �
Pd − 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

1
2
��nloop × n𝑑𝑑� + �sloop × s𝑑𝑑�+ �a𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × ad��

� 
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Figure 4. Experimental set-up. The heading direction is 
represented by a laser pointer on the window area (640x480 
pixel) to be captured by the camera 
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The trajectory pixel data input is converted by 
the camera into trajectory coordinates (x,y). The 
azimuth and elevation angles of the TDOF 
manipulator are computed using inverse 
kinematic and then the robot is driven by the 
motors so that the heading direction of the tip pin 
points to the trajectory coordinates by a laser 
pointer. The laser point (object) coordinates (x,y) 
and its distance is read by the camera. The 
trajectory pixel data output is compared with the 
trajectory pixel data input, Figure 6 plots the 
trajectory data input (kx, ky, kz). 

In practice, the microcontroller receives 
decimal values corresponding to the reference 
angle values from the host computer. In the 
experimental set up the following unit conversion 
holds: 1 pixel = 0.00176 cm = 0.00172 rad = 
0.0984 deg. The resolution of the input-output 

signal is 10 bits. From calibration through direct 
measurement, the relationship between angle and 
decimal value is given as follows: 

𝐷𝑎𝑧 = −0.0002𝜃13  +  −0.0001𝜃12  +
 1.1492𝜃1  +  524.36 (15) 

𝐷𝑒𝑙 =  −0.0004𝜃22  +  3.9254𝜃2  +  530.08 (16) 

where Daz is a decimal value to enable azimuth 
rotation pulse, and Del is a decimal value to 
enable elevation rotation pulse. The default 
position (0,0) of the TDOF manipulator in 
decimal is 526 (azimuth) and 530 (elevation). 
 
 

VI. RESULT AND ANALYSIS 
A computer code has been made using C 

language to implement the algorithm. Figure 7 
shows experiment results of aiming direction 
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Figure 5. The working principle of experiment: (a) Hardware set-up; (b) Information flow 

 

 
Figure 6. Isometric view of trajectory input 

 
Figure 7. Experiment results 
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with 28 pieces of target coordinates. The solid 
black line is the reference target coordinates 
generated by equation (18), the broken red line is 
output coordinates using geometrical approach, 
and the solid blue line is the output coordinate 
using numerical approach. 

Performance indicators of the error signal, i.e. 
average value (μ) and standard deviation (σ), are 
listed in Table 2. Processing time consumed by 
the host computer during the experiment was also 
recorded, and shown in Figure 8. The maximum 
processing time required to calculate the inverse 
kinematic is 0.7 µs for geometrical approach and 
139.0 µs for the numerical approach. Average 
processing times of geometrical and numerical 
approaches are 0.4 µs and 108.4 µs, respectively. 
It can be said that the processing time of the 
numerical approach is 250 times longer than the 
geometrical approach. 

The experiment result has been further 
analized in the form of aiming error as shown in 
Figure 9. From Figure 9, it can be seen that the 
results of the aiming fall into the scope of the 
field tested, in other words, it has high accuracy 
and precision. By substituting performance 
indicator values in Table 2 into equation 17, 
relative accuracy percentage is obtained which is 
98.55% for geometrical approach and 98.63% for 
the numerical approach. 

The experiment results were also analyzed 
statistically. Table 3 shows the details of 
statistical tests and values from CEP test data. It 
gives confidence level of 90% (α = 0.1). The 
statistical tests show generally good results. 
Special to the MPI test at the target, the 
population distribution at X axis produces critical 
t < t statistical which means it rejects the null 
hypothesis. However, since p-value > 0.1 (90%), 
this does not provide evidence to reject the null 
hypothesis that the MPI is not at the targets. 

The CEP plots can be seen in Figure 10. It 
appears that the CEP (50% probable) for the 
numerical approach is smaller than the 
geometrical approach, i.e. 10.27 pixels and 9.79 
pixels, respectively. 

 
Figure 8. Processing time during experiment 
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Figure 9. Aiming error 

Table 2. 
Performance indicators of error signal 

Parameter 
Geometrical Numerical 

X Y X Y 

mean, µ 3.50 -0.11 3.32 0.29 
deviation standard, σ 8.28 9.17 8.09 8.54 
count, n 28.00 28.00 28.00 28.00 
degree of freedom, df 27.00 27.00 27.00 27.00 
k = σmin/σmax 0.90  0.95  

 

Table 3. 
CEP statistical test details 

CEP Results  
at (α = 0,01) 

Geometrical 
(pixel) 

Numerical 
(pixel) 

Az El Az El 
t-Test for statistical independence 
σ2 68.63 84,10 65.41 72.88 
�̂�𝑝𝑜𝑜𝑙𝑒𝑑2  76.36 69.14 
df 54.00 54.00 
t statistical 1.54 1.37 
t critical 1.67 1.67 
Independent: YES YES 
Lilliefors Test for normality 
t statistical 0.10 0.13 0.1 0.14 
t critical 0.15 0.15 
Bivariate normal: YES YES 
t-Test for MPI at target 
t statistical 2.24 0.06 2.17 0.18 
t critical 0.15 0.15 
MPI at the target: NO YES NO YES 
p-value 0.98 0.52 0.98 0.57 
F-Test for circular distribution 
F statistical 0.60 0.78 
F critical 1.65 1.65 
Circular: YES YES 
CEP Results 
CEP (about MPI) 10,27 9,79 
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VII. CONCLUSION 
The research proves that numerical method 

provides relative accuracy percentage which is 
better than geometric method, which is equal to 
98.63% and 98.55%, respectively. Therefore, it 
can be recommended to implement the numerical 
algorithm into TDOF robot manipulator instead 
of the geometrical one. 
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