

Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

Journal of Mechatronics, Electrical Power,

and Vehicular Technology

e-ISSN: 2088-6985

p-ISSN: 2087-3379

www.mevjournal.com

doi: https://dx.doi.org/10.14203/j.mev.2017.v8.40-49
2088-6985 / 2087-3379 ©2017 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences (RCEPM LIPI).

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Accreditation Number: (LIPI) 633/AU/P2MI-LIPI/03/2015 and (RISTEKDIKTI) 1/E/KPT/2015.

Comparison between RLS-GA and RLS-PSO for

Li-ion battery SOC and SOH estimation: A simulation study

Latif Rozaqi a, *, Estiko Rijanto a, Stratis Kanarachos b
a Research Center for Electrical Power and Mechatronics, Indonesian Institute of Sciences (LIPI)

Kampus LIPI, Jalan Sangkuriang, Gd.20, Bandung 40135, Indonesia
b Centre for Mobility & Transport, Coventry University

Priory Street, Coventry, CV1 5FB, United Kingdom

Received 22 March 2017; received in revised form 31 May 2017; accepted 03 July 2017
Published online 31 July 2017

Abstract

This paper proposes a new method of concurrent SOC and SOH estimation using a combination of recursive least square

(RLS) algorithm and particle swarm optimization (PSO). The RLS algorithm is equipped with multiple fixed forgetting factors

(MFFF) which are optimized by PSO. The performance of the hybrid RLS-PSO is compared with the similar RLS which is

optimized by single objective genetic algorithms (SOGA) as well as multi-objectives genetic algorithm (MOGA). Open circuit

voltage (OCV) is treated as a parameter to be estimated at the same time with internal resistance. Urban Dynamometer Driving

Schedule (UDDS) is used as the input data. Simulation results show that the hybrid RLS-PSO algorithm provides little better

performance than the hybrid RLS-SOGA algorithm in terms of mean square error (MSE) and a number of iteration. On the other

hand, MOGA provides Pareto front containing optimum solutions where a specific solution can be selected to have OCV MSE

performance as good as PSO.

©2017 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences. This is an open access article

under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Keywords: Li-Ion; battery; state of charge (SOC); state of health (SOH); recursive least square (RLS); particle swarm

optimization (PSO); genetic algorithm (GA)

I. Introduction

Battery states of charge (SOC) and state of health

(SOH) have to be estimated properly in order to build

a good battery management system (BMS) for electric

vehicles. It is known that Lithium battery has time

varying nonlinear dynamics where the speed of

parameter values change is different on each

parameter.

There have been many SOC estimation methods

proposed by other researchers. A mixed coulomb-

counting and model-based algorithm was proposed for

SOC estimation of LiFePO4 battery [1, 2, 3]. Current

and terminal voltages are measured, and an integral

feedback controller is used to compensate terminal

voltage and SOC estimation errors. A PI observer was

proposed for SOC estimation of Li-Ion battery where

the SOC and polarization voltage are used as state

variables [4]. More robust and advanced methods such

as Kalman filter [5, 6] and Sliding Mode Observer [7]

have also been used. However, the above methods

assumed that the battery parameter values are constant

or constant at some specified region, and treated the

parameter values variance as a disturbance. A deeper

investigation is required to evaluate the stability and

estimation performance when the parameter values

vary largely.

Recursive Least Square (RLS) has also been

applied for battery SOC estimation. It was applied to a

single RC Thevenin model of Lithium-Ion battery

whose open circuit voltage (OCV) was depicted by

Nernst equation [8]. It was applied to a double

polarization RC Thevenin model of a LiFePO4 battery

of which the SOC is estimated by online identification

of OCV and the predetermined OCV-SOC look up

table [9]. Moving window least square (MWLS)

method was developed and applied to single RC

* Corresponding Author. Tel: +62 22 250 3055

E-mail address: latiefrozaqie@gmail.com

https://dx.doi.org/10.14203/j.mev.2017.v8.40-49
http://u.lipi.go.id/1436264155
http://u.lipi.go.id/1434164106
http://mevjournal.com/index.php/mev/index
https://dx.doi.org/10.14203/j.mev.2017.v8.40-49
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://crossmark.crossref.org/dialog/?doi=10.14203/j.mev.2017.v8.40-49&domain=pdf
https://creativecommons.org/licenses/by-nc-sa/4.0/

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

41

Thevenin models of Li-Ion and Li-Polymer batteries

[10]. The SOC and battery parameters are co-

estimated using a combination of MWLS and linear

observer. All the above RLS based SOC estimation

methods use single forgetting factor. RLS with

multiple fixed forgetting factors (MFFF) has been

used to estimate SOC of a Li-Ion battery. The

forgetting factors were optimized using Genetic

Algorithm (GA), and it was proved that the algorithm

provided better performance than RLS with single

forgetting factor [11]. An interesting result has been

reported on the estimation of battery SOH using RLS

without forgetting factor. Estimation speed and

reliability have been compared between internal

ohmic resistance based estimation and capacity based

estimation. It can be concluded that SOH estimation

based on internal resistance is faster and more reliable

[12].

Many researchers have used PSO algorithm for

estimating battery SOC in different ways. Support

Vector Regression (SVR) was used to estimate SOC

of a Lead-acid battery in which hyperparameters of

the SVR are determined using PSO [13]. A hybrid

model which combined multivariate adaptive

regression splines (MARS) and PSO was used to

estimate SOC of a LiFeMnPO4 battery cell. PSO was

used to find the optimal parameters of the MARS

model. As a result, SOC is represented by 29 pairs of

basis functions and their coefficients [14]. Stepwise

method considering multicollinearity was used to

predict battery SOC. PSO was used to find optimum

coefficient values, and the SOC can be expressed

using 9 variables [15].

Some methods for concurrent estimation of battery

SOC and SOH have been proposed. Dual Kalman

Filter (DKF) was used for adaptive state and

parameter estimation of Lithium-Ion batteries.

Diffusion voltage, state of charge, and internal

resistance are selected as state variables, while cell

capacity, diffusion resistance, and diffusion

capacitance are chosen as parameters. One Kalman

filter is used for state estimation and the other Kalman

filter is used for parameter values [16]. A hybrid

battery model was proposed which consists of an

enhanced Coulomb counting algorithm and an

electrical circuit model. The Coulomb counting

algorithm is used for SOC estimation while the

electrical circuit model is used for electrical

impedance estimation. Five parameters are used in the

electrical model those are internal resistance, one pair

of resistance and capacitance which governs short-

term dynamics, and one pair of resistance and

capacitance which governs long-term dynamics. A set

of nonlinear discrete time dynamic equations are

formulated using battery terminal voltage and current

as measured signals as well as six unknown

parameters. The unknown parameters include internal

resistance, open circuit voltage, two parameters as a

function of short-term dynamical resistance and

capacitance, and two parameters as a function of long-

term dynamical resistance and capacitance. PSO is

used to find a set of values of the unknown parameters

which minimizes the selected fitness function. The

OCV is then used for SOC estimation using the

enhanced Coulomb counting method [17].

The DKF involves extended Kalman filter for

parameter identification which adds computational

burden. The use of PSO in the hybrid model requires

execution of the PSO iteration independently to the

SOC calculation routine which may rise a problem

since there is no guarantee that the stopping criterion

is fulfilled in the sampling period of SOC calculation.

An adaptive algorithm which can estimate SOC

and SOH concurrently and can work under single

sampling time and less computing burden is necessary.

In this paper, such requirement is answered by

proposing a new algorithm named hybrid Recursive

Least Square – Particle Swarm Optimization (RLS-

PSO). RLS is equipped with multiple fixed forgetting

factors whose the values are tuned by PSO. PSO is

simple and inexpensive computational effort

compared to other artificial intelligence (AI) methods.

The PSO is used to find the optimum values of these

forgetting factors in an offline manner using AI to

avoid the tedious effort instead of trial and error. Once

optimum forgetting factor λ is obtained, the RLS will

run online with these determined optimum forgetting

factor. SOC is predicted based on Open Circuit

Voltage (OCV) while SOH is predicted based on

internal resistance. Moreover, in order to evaluate the

performance of hybrid RLS-PSO, a hybrid RLS-GA

(Single objective GA (SOGA)) which is a more

common method and had already used by the author

on previous paper is employed [11]. Furthermore,

hybrid RLS with multi-objectives GA (MOGA) is also

introduced.

In Section II, battery dynamical model, RLS, and

problem formulation described. Section III presents

optimization methods to calculate values of forgetting

factors using PSO, SOGA, and MOGA. Simulation

results and discussion are reported in Section IV.

Finally, conclusion is drawn in Section V.

II. Modeling and problem formulation

Figure 1 shows an equivalent circuit model using

single RC [3]. 𝑉𝑡 and 𝐼 represent the battery terminal

voltage and current, respectively. 𝑅0 is the battery

internal resistance, 𝑅𝑝 is diffusion resistance, and 𝐶𝑝

is diffusion capacitance. 𝑈𝑑 denotes the voltage drop

in the diffusion resistance.

By using a convention that the current is positive

when it flows into the battery, the dynamics of the

battery model can be expressed in the following

discrete time equations.

𝑈𝑑(𝑘) = −𝑎1𝑈𝑑(𝑘 − 1) + 𝑏0𝐼(𝑘) + 𝑏1𝐼(𝑘 − 1) (1)

𝑉𝑡(𝑘) = 𝑈𝑑(𝑘) + 𝑂𝐶𝑉(𝑘) (2)

where:

𝑅0 = 𝑏0; 𝑅𝑝 = (
𝑏1−𝑎1𝑏0

1+𝑎1
) ; 𝐶𝑝 = (

𝑇

𝑏1−𝑎1𝑏0
)

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49 42

Terminal voltage and current are measurable, but

𝑈𝑑(𝑘) and 𝑂𝐶𝑉(𝑘) can not be measured in real time

manner. OCV of the battery is known to be a

nonlinear function of its SOC [8]. The internal battery

parameters are dependent on SOC and they are time

varying in nature.

Terminal voltage estimate �̂�𝑡(𝑘) can be expressed

in the following linear equation.

�̂�𝑘 = �̂�𝑡(𝑘) = �̂�𝑘
𝑇𝑥𝑘 (3)

where the regressor 𝑥𝑘 and the parameter estimates �̂�𝑘

are given below.

𝑥𝑘 = [𝑈𝑑(𝑘 − 1); 𝐼(𝑘); 𝐼(𝑘 − 1); 1]

𝜃𝑘 = [−𝑎1(𝑘); 𝑏0(𝑘); 𝑏1(𝑘); 𝑂𝐶𝑉(𝑘)]

The measured terminal voltage is assumed to follow

the following formula.

𝑦𝑘 = 𝑉𝑡(𝑘) = �̂�𝑡(𝑘) + 𝑒𝑘 (4)

The parameter estimates are calculated using RLS

with multiple fixed forgetting factors (MFFF-RLS) as

follows [18, 19].

𝑒𝑘 = 𝑦𝑘 − 𝑥𝑘
𝑇 �̂�𝑘−1 (5)

Kik =
Pik−1

xik

λi+xik
T Pik−1

xik

 (6)

Pik = (1 − Kikxik
T)Pik−1 (7)

Lk =
1

1+
P1k−1

x1k−1
2

λ1
+⋯+

Pik−1
xik−1
2

λi

[

P1k−1x1k−1

λ1

⋮
Pik−1

xik−1

λi]

 (8)

θ̂k = θ̂k−1 + Lkek (9)

where subscript 𝑖 indicates the scalar components 𝑖 =
1, 2 . . . 𝑛. For the battery model addressed in this paper

𝑛 = 4. 𝜆𝑖 denotes forgetting factor. By assuming that

OCV changes faster than the internal parameters, it is

reasonable to select different values of forgetting

factors among them.

A computer script code (m file in Matlab®) has

been built to realize the MFFF-RLS algorithm

according to the above description and formulae. The

following performance index is used to evaluate the

MFFF-RLS algorithm.

𝐽0 =
1

𝑁𝑠
∑ {𝑉𝑡(𝑘) − �̂�𝑡(𝑘)}

2𝑁𝑠
𝑘=1 (10)

SOC estimation is optimized using performance

index 𝐽1 , while SOH estimation is optimized by

performance index 𝐽2 as follows.

𝐽1 =
1

𝑁𝑠
∑ (𝑂𝐶𝑉∗(𝑘) − 𝑂𝐶𝑉(𝑘))2
𝑁𝑠
𝑘=1 (11)

𝐽2 =
1

𝑁𝑠
∑ (𝑅0

∗(𝑘) − 𝑅0(𝑘))
2𝑁𝑠

𝑘=1 (12)

𝑂𝐶𝑉∗ and 𝑅0
∗ represent true values of OCV and

internal resistance, respectively.

The problem of determining optimum forgetting

factor values is formulated as follows.

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐽1(𝜆𝑖)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐽2(𝜆𝑖)

𝑊ℎ𝑒𝑟𝑒:
0 < 𝜆𝑖 < 1

𝐼(𝑘) 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑈𝐷𝐷𝑆

}

 (13)

III. Optimization methods using PSO and

GA

The optimization problem is solved using particle

swarm optimization (PSO) and genetic algorithm

(GA). Figure 2 shows the block diagram of the

optimization method proposed in this paper. Three

methods are elaborated i.e. optimization based on PSO

(method 1), optimization based on SOGA (method 2),

and optimization based on MOGA (method 3). Their

results are analyzed and compared.

PSO is a kind of evolutionary computation

techniques which resembles the social behaviour of

fish schooling or bird flocking. Its basic conceptual

framework was originally proposed in 1995 for

optimization of continuous nonlinear functions [20].

The term swarm was selected because it articulated

well five basic principles of swarm intelligence in

artificial life, those are the proximity principle, the

quality principle, the principle of diverse response, the

principle of stability, and the principle of adaptability.

It involves cooperation and competition among

individuals throughout generations. Each individual

remembers the best position which had found, and the

information of the global best position that an

individual had found was shared to all members. Since

then it has been experiencing various developments

[21, 22].

 In PSO, a particle represents a solution, and a

swarm of particles is referred to as population of

solutions. Each particle is characterized by its velocity

and position. Every time a new position is achieved

the best positions and velocities are updated. Each

particle adjusts its velocity based on its experiences.

The following equations are used in PSO to find

optimum values of forgetting factors.

𝜆0
𝑖 = 𝜆𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛) (14)

𝑣0
𝑖 =

𝜆0
𝑖

𝑡𝑠
 (15)

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑅𝑎𝑛𝑑 (
𝑝𝑖−𝜆𝑘

𝑖

𝑡𝑠
) + 𝑐2𝑅𝑎𝑛𝑑 (

𝑝𝑘
𝑔
−𝜆𝑘

𝑖

𝑡𝑠
)(16)

𝜆𝑘+1
𝑖 = 𝜆𝑘

𝑖 + 𝑣𝑘+1
𝑖 𝑡𝑠 (17)

Figure 1. Single RC equivalent circuit model

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

43

𝜆𝑘
𝑖 and 𝑣𝑘

𝑖 represent the ith particle at time k of the

positions and velocities, respectively. The upper and

lower bounds on the positions are denoted by 𝜆𝑚𝑎𝑥

and 𝜆𝑚𝑖𝑛 . Rand is a uniformly distributed random

variable whose value is between 0 and 1. 𝑡𝑠 denotes a

positive scalar. The initial positions 𝜆0
𝑖 and initial

velocities 𝑣0
𝑖 are randomly generated by Equation (14)

and (15). For the next iteration, velocities of each

particle is given by Equation (16). 𝑝𝑖 is the best

positions of each particle over time in current and all

previous moves. 𝑝𝑘
𝑔

 is the best global positions of a

certain particle in the current swarm with respect to a

predefined fitness function. The new search direction

incorporates three pieces of information which have

each own weight factor. The first part is current

motion which is multiplied by its inertia factor 𝑤. The

second part is particle memory influence which is

multiplied by its cognitive factor 𝑐1, and the third part

is swarmed influence which is multiplied by its social

factor 𝑐2. Position update of each particle is given by

Equation (17).

In order to minimize mean square error values of

open circuit voltage and internal resistance, the

following fitness function is used.

Ft = αF1 + (1 − α)F2 (18)

where

F1 =
1

Ns
∑ (1 −

OCV(k)

OCV∗(k)
)
2

Ns
k=1 (19)

F2 =
1

Ns
∑ (1 −

R0(k)

R0
∗ (k)

)
2

Ns
k=1 (20)

0 < α < 1 (21)

By normalizing performance indexes in Equation (11)

and (12), their corresponding dimensionless fitness

functions are obtained in Equation (19) and (20). The

total fitness function in Equation (18) is a sum of the

weighted normalized fitness functions. Values of the

weight 𝛼 are listed in Table 1.

Genetic Algorithm (GA) is an evolutionary

algorithm which imitates evolution of living creature.

Many variants of GAs exists depending on evaluation

method of new chromosomes, a calculation method

using serial or parallel processors, combination with

some local optimization algorithms (hill climbing, etc),

and other factors [23].

A computer code script (m file in Matlab®) has

been built to realize a GA according to the following

procedure: First, define parameter values including

number of initial population/chromosomes 𝑁𝑖𝑝 ,

number of genes in a chromosome is 4, boundary

value of each gene (0 < 𝜆𝑖 < 1), and number of bits

for each genotype to construct phenotype 𝑁𝑏 .Second,

define probability rate values including selection

probability rate 𝑃𝑠 , crossover probability rate 𝑃𝑐 , and

mutation probability rate 𝑃𝑚. Each probability rate is

divided into three sets which are generated randomly,

namely small (random value from 0.1 to 0.3), medium

(random value from 0.4 to 0.6), and large (random

value from 0.7 to 0.9). Thus, there exist 27 sets of

probability rate values which yield 27 best

chromosomes from 27 different evolutions. Third,

create initial random chromosomes. Fourth, evaluate

fitness of each chromosome using fitness function in

Equation (18), and select best individuals using

ranking method. Fifth, create mating pool and

generate offsprings by applying a single point

crossover. Sixth, reproduce and ignore few

chromosomes. Seventh, performs mutation by bit

flipping operation randomly according to the mutation

probability rate. Elitism principle is used to control

mutation. Finally, back to step 4, until termination

criterion is achieved.

Method 1 and method 2 above are used to solve

the single objective function in Equation (18). In order

to solve the original multiple objectives optimization

problem described in the problem formulation at the

previous section, multiple objectives GA (MOGA) is

also implemented. A fast elitist multiobjective GA

known as nondominated sorting genetic algorithm II

(NSGAII) is used to solve this problem since this

algorithm has three advantages, i.e. a fast non-

dominated sorting procedure, a fast crowded distance

estimation process, and a simple crowded comparison

operator. The main loop of the NSGA II procedure is

described below [24]. First, combine parent and

offspring population and saved as 𝑅𝑡. Second, execute

the fast non-dominated sorting procedure against 𝑅𝑡 ,
and save the result of all non-dominated fronts of 𝑅𝑡
into 𝐹 = (𝐹1, 𝐹2, ⋯). Third, set initial values of parent

population 𝑃𝑡+1 = 0 , and generation counter 𝑖 = 1 .

Fourth, run iteration of generation until the parent

population is filled and |𝑃𝑡+1| + |𝐹𝑖| ≤ 𝑁. Execute the

crowded distance estimator in 𝐹𝑖 , include i-th non-

dominated front in the parent population, then check

the next front for inclusion 𝑖 = 𝑖 + 1. Fifth, sort 𝐹𝑖 in

Figure 2. The optimization method of forgetting factors values

Table 1.

Weight of finess function

No 1 2 3 4 5 6 7 8 9

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49 44

descending order using the crowded comparison

operator. Sixth, choose the first (𝑁 − |𝑃𝑡+1|) elements

of 𝐹𝑖 and include them into the parent population.

Seventh, use selection, crossover, and mutation to

create offspring 𝑄𝑡+1 . Finally, increment the

generation counter 𝑡 = 𝑡 + 1. More details about the

algorithm can be seen in [24].

IV. Results and discussion

In order to validate the proposed method,

computer simulation has been conducted. The swarm

size in PSO and initial population in GA is set to 64.

The population size is chosen based on the crossover

operation in GA, it is easier to choose a 2n number.

Larger n needs more calculation time each iteration

but yields smaller number of generation. Based on this

consideration we choose n=6. For the sake of equality

and comparability, the swarm size in PSO is chosen

the same number.

The optimization is executed iteratively until a

termination criterion is achieved. Fitness function

tolerance is set to 10e-6 while stall iteration is set to 50.

For method 1, the cognitive factor and social factor

are set 𝑐1 = 1.49 and 𝑐2 = 1.49. In order to maintain

the speed of convergence while avoiding local optima,

the inertia factor is changed linearly with iteration

counter 𝑘 as follows.

𝑤 = 𝑤𝑖 −
(𝑤𝑖−𝑤𝑓)

𝑁
𝑘 (22)

In this simulation, parameter values related to inertia

factors are set as follows: 𝑤𝑖 = 1.1 , 𝑤𝑓 = 0.1 , and

𝑁 = 50.

Figure 3 shows trajectories of fitness function 𝐹𝑡 as

a function of generation for 9 different weight values

in Table 1. Figure 3(a) plots the results of method 1

while Figure 3(b) those of method 2. In method 2,

every single weight produces 27 sets of solutions

according to the values of selection, crossover, and

(a)

(b)

Figure 3. Trajectories of fitness function 𝐹𝑡; (a) PSO; (b) SOGA

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

45

mutation probability rates. The best solution is

selected among 27 choices. Therefore, in Figure 3(b)

we have 9 curves of the best-selected solutions. It is

obvious that the value of weight affects the fitness

function value significantly. The best result of method

1 and method 2 in Figure 3 are plotted together in

Figure 4.

From Figure 4, some important results can be

summarized as follows: First, the SOGA and PSO

provide similar performance index values at the end of

generation (after 52 iterations). Second, at the 3rd and

4th generation, SOGA provides better performance

than PSO. Third, the 5th generation, SOGA and PSO

provide similar performance.

Fourth, at the 6th generation, PSO gives better

performance than SOGA, and this condition remains

until the 43rd generation. During this condition, the

performance difference is around 10-8 this implies that

PSO provides better performance than SOGA in terms

of less generation number.

Depending on the engineering problem solved, a

performance difference of 10-8 may be considered as

substantially small, so that one may argue that SOGA

and PSO have the same capability for solving

optimization problem such as this paper. However, in

this paper, the cognitive and social factor values of

PSO are fixed. Investigation of the impact of different

cognitive and social factor on the performance is left

for further study.

Figure 5 shows the Pareto front obtained by

NSGA II. From this result, it can be seen that NSGA

II provides several optimal solutions of the original

multi-objectives optimization problem stated in

Equation (13). In other words, this implies that NSGA

II leaves the final decision to us to select a solution. In

this paper, a solution is selected which gives the

similar performance of fitness functions 𝐹1 and 𝐹2

from PSO and SOGA above. Thus, 𝐹1 = 1.5733𝑒 − 6

and 𝐹2 = 1.3829𝑒 − 6.

In respect to the time consumed or a number of

generation during iteration, the following results are

obtained: First, PSO requires a smaller number of

generation to yields better MSE performance than

SOGA. Second, MOGA requires much longer time

than PSO and SOGA because it computes Pareto front

containing several numbers of optimum solutions.

Table 2 lists up the forgetting factors obtained by

PSO, SOGA, and NSGA II. These forgetting factors

are used together with MFFF-RLS to estimate battery

terminal voltage, OCV, SOC, and internal resistance

𝑅0.

Figure 6 shows battery terminal voltage and its

estimation error during the UDDS testing using the

forgetting factors in Table 2. Red line is the results of

PSO, the blue line is the results of SOGA, and the

green line is the results of NSGA II. Figure 7 shows

the corresponding OCV while Figure 8 shows the

corresponding SOC and its estimation error. Figure 9

shows time history of internal resistance estimate

�̂�0(𝑘) and its error 𝑒�̂�0(𝑘) = 𝑅0(𝑘) − �̂�0(𝑘).
Table 3 lists performance index values obtained

from these results. As expected PSO, SOGA and

NSGA II give similar performances in terms of mean

square error. However, PSO and MOGA provide a

little better performance than SOGA in terms of OCV

MSE value.

Figure 4. The best performance index 𝐹𝑡 of PSO and SOGA

Table 2.

Forgetting factors obtained through optimization

Method 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒

PSO 0.9298 0.0101 0.7171 0.2316

SOGA 0.9395 0.0508 0.7489 0.2692

NSGA II 0.9365 0.9185 0.8148 0.3062

Table 3.
Performance index value

No
Performance

Index

Values

PSO SOGA NSGAII

1 𝐽0 2.0574e-08 2.1339e-08 2.2961e-08

2 𝐽1 2.4773e-05 2.4912e-05 2.4339e-05

3 𝐽2 1.1559e-11 1.1559e-11 4.1533e-10

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49 46

Figure 5. Pareto front of NSGA II

(a)

(b)

Figure 6. Tracking performance of various methods; (a) Terminal voltage; (b) estimation error

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

47

Figure 7. Open circuit voltage

(a)

(b)

Figure 8. Tracking performance of various methods; (a) Time history of state of charge; (b) SoC error

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49 48

V. Conclusions

From the computer simulation results, the

following conclusion can be drawn. By selecting

proper probability rates of selection, crossover, and

mutation, SOGA was able to produce almost similar

performance with PSO in terms of MSE. Considering

the number of generation, PSO provides better

performance than SOGA in terms of less generation

number. MOGA provides Pareto fronts containing

optimum solutions where a specific solution can be

selected to have MSE performance as good as PSO.

However, the MOGA requires much longer time than

PSO and SOGA because it computes Pareto fronts

containing several numbers of optimum solutions.

Acknowledgement

The authors thank to the Indonesian Institute of

Sciences (LIPI) for providing financial support in the

scheme of excellent research programme with the

contract number 1975.3/D3/PG/2016 of the financial

year of 2016. They also deliver gratitude to the

Ministry of Science, Technology, and Higher

Education of the Republic of Indonesia in providing

financial support for conducting individualized

immersion programme at Centre for Mobility &

Transport, Coventry University, United Kingdom in

2016.

References

[1] F. Codeca et al., "On battery state of charge estimation: A new

mixed algorithm," in Proc. IEEE Int. Conf. Control Appl.,
pp.102-107, 2008.

[2] F. Codeca et al., "The mix estimation algorithm for battery

State-of-Charge estimator – Analysis of the sensitivity to
measurement errors," pp.8083-8088, 2009.

[3] A. Nugroho et al., "Battery state of charge estimation by using

a combination of Coulomb Counting and dynamic model with
adjusted gain," in International Conference on Sustainable

Energy Engineering and Application (ICSEEA), pp.54-58,

2015.

[4] J. Xu et al., "The state of charge estimation of lithium-ion

batteries based on a proportional-integral observer," IEEE

Trans. Veh. Technol., vol. 63, no. 4, pp. 1614-1621, 2014.
[5] R. Xiong et al., "A robust state-of-charge estimator for

multiple types of lithium-ion batteries using adaptive extended

Kalman filter," J. Power Sources, vol. 243, pp. 805-816, 2013.
[6] D. Li et al., "State of charge estimation for LiMn2O4 power

battery based on strong tracking sigma point Kalman filter," J.

Power Sources, vol. 279, pp. 439-449, 2015.
[7] X. Chen et al., "A novel approach for state of charge

estimation based on adaptive switching gain sliding mode

observer in electric vehicles," J. Power Sources, vol. 246, p.
667–678, 2014.

[8] X. Hu et al., "Online Estimation of an Electric Vehicle

Lithium-Ion Battery Using Recursive Least Squares with
Forgetting," 2011.

[9] H. He et al., "Online model-based estimation of state-of-

charge and open-circuit voltage of lithium-ion batteries in

electric vehicles," Energy, vol. 39, no. 1, p. 310–318, 2012.

[10] H. R. Eichi and M. Chow, "Adaptive parameter identification

and State-of-Charge estimation of lithium-ion batteries,"

(a)

(b)

Figure 9. Tracking performance of various methods (a) Internal resistance; (b) Error in internal resistance

L. Rozaqi et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 8 (2017) 40–49

49

IECON 2012 - 38th Annual Conference on IEEE Industrial

Electronics Society, pp. 4012-4017, 2012.

[11] L. Rozaqie and E. Rijanto, "SOC Estimation for Li-Ion Battery

using Optimum RLS Method Based on Genetic Algorithm,

"Proc. International Conference on Information Technology,

Electrical Engineering, Date of Conference Oct, 2016. Added
to IEEE Xplore 28 February 2017.

[12] M. N. Ramadan et al., "Comparative Study Between Internal

Ohmic Resistance and Capacity for Battery State of Health
Estimation," Journal of Mechatronics, Electrical Power, and

Vehicular Technology, vol. 6, no. 2, pp. 113-122, 2015.

[13] V. Surendar et al., "Estimation of State of Charge of a Lead
Acid Battery Using Support Vector Regression," Procedia

Technology 21, pp. 264-270, 2015.

[14] J. C. Anton et al., "A new predictive model for the state of
charge of a high power lithium-ion cell based on a PSO

optimized multivariate adaptive regression splines approach,"

IEEE Transactions on Vehicular Technology , 2015.
[15] B. Wahono et al., "Prediction Model of Battery State of

Charge and Control Parameter Optimization for Electric

Vehicle," Journal of Mechatronics, Electrical Power, and

Vehicular Technology, vol. 6, no. 1, pp. 31-38, 2015.

[16] G. Walder et al., "Adaptive State and Parameter Estimation of

Lithium-Ion Batteries Based on a Dual Linear Kalman Filter,"
Proceeding of Second International Conference on The Society

of Diital Information and Wireless Communications (SDIWC),

, 2014.

[17] T. Kim et al., "Online State of Charge and Electrical

Impidance Estimation for Multicell Lithium-ion Batteries,"

IEEE Transportation Electrification Conference and Expo
(ITEC), pp. 1-6, 2013.

[18] A. Vahidi et al., "Simultaneous mass and time-varying grade

estimation for heavy-duty vehicles," Proc. 2003 American
Control Conference, vol. 6, p. 4951–4956, 2003.

[19] A. Vahidi, et al., "Recursive least squares with forgetting for

online estimation of vehicle mass and road grade: theory and
experiments," Veh. Syst. Dyn., vol. 43, no. 1, pp. 31-55, 2005.

[20] J. Kennedy and R. Eberhart, "Particle Swarm Optimization,"

Proceedings of the IEEE International Conference on Neural
Ntworks, pp. 1942-1945, 1995.

[21] J. Yisu et al., "The landscape adaptive particle swarm

optimizer," Applied Soft Computing, vol. 8, pp. 295-304, 2008.
[22] A. Sahu et al., "Fast Convergence Particle Swarm

Optimization for Functions Optimization," Procedia

Technology, vol. 4, pp. 319-324, 2012.
[23] A. Munawar et al., "A survey: Genetic algorithms and the fast

evolving world of parallel computing," in Proc. - 10th IEEE

Int. Conf. High Perform. Comput. Commun. HPCC 2008, pp.

897–902, 2008.

[24] K. Deb et al., "A fast and elitist multiobjective genetic

algorithm: NSGA II," IEEE Transactions on Evolutionay
Computation, vol. 6, no. 2, pp. 182-197, 2002.

