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Abstract 

This paper proposes a new method of concurrent SOC and SOH estimation using a combination of recursive least square 

(RLS) algorithm and particle swarm optimization (PSO). The RLS algorithm is equipped with multiple fixed forgetting factors 

(MFFF) which are optimized by PSO. The performance of the hybrid RLS-PSO is compared with the similar RLS which is 

optimized by single objective genetic algorithms (SOGA) as well as multi-objectives genetic algorithm (MOGA). Open circuit 

voltage (OCV) is treated as a parameter to be estimated at the same time with internal resistance. Urban Dynamometer Driving 

Schedule (UDDS) is used as the input data. Simulation results show that the hybrid RLS-PSO algorithm provides little better 

performance than the hybrid RLS-SOGA algorithm in terms of mean square error (MSE) and a number of iteration. On the other 

hand, MOGA provides Pareto front containing optimum solutions where a specific solution can be selected to have OCV MSE 

performance as good as PSO. 

©2017 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences. This is an open access article 

under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/).  

Keywords: Li-Ion; battery; state of charge (SOC); state of health (SOH); recursive least square (RLS); particle swarm 

optimization (PSO); genetic algorithm (GA) 

 

 

I. Introduction 

Battery states of charge (SOC) and state of health 

(SOH) have to be estimated properly in order to build 

a good battery management system (BMS) for electric 

vehicles. It is known that Lithium battery has time 

varying nonlinear dynamics where the speed of 

parameter values change is different on each 

parameter. 

There have been many SOC estimation methods 

proposed by other researchers. A mixed coulomb-

counting and model-based algorithm was proposed for 

SOC estimation of LiFePO4 battery [1, 2, 3]. Current 

and terminal voltages are measured, and an integral 

feedback controller is used to compensate terminal 

voltage and SOC estimation errors. A PI observer was 

proposed for SOC estimation of Li-Ion battery where 

the SOC and polarization voltage are used as state 

variables [4]. More robust and advanced methods such 

as Kalman filter [5, 6] and Sliding Mode Observer [7] 

have also been used. However, the above methods 

assumed that the battery parameter values are constant 

or constant at some specified region, and treated the 

parameter values variance as a disturbance. A deeper 

investigation is required to evaluate the stability and 

estimation performance when the parameter values 

vary largely.  

Recursive Least Square (RLS) has also been 

applied for battery SOC estimation. It was applied to a 

single RC Thevenin model of Lithium-Ion battery 

whose open circuit voltage (OCV) was depicted by 

Nernst equation [8]. It was applied to a double 

polarization RC Thevenin model of a LiFePO4 battery 

of which the SOC is estimated by online identification 

of OCV and the predetermined OCV-SOC look up 

table [9]. Moving window least square (MWLS) 

method was developed and applied to single RC 
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Thevenin models of Li-Ion and Li-Polymer batteries 

[10]. The SOC and battery parameters are co-

estimated using a combination of MWLS and linear 

observer. All the above RLS based SOC estimation 

methods use single forgetting factor. RLS with 

multiple fixed forgetting factors (MFFF) has been 

used to estimate SOC of a Li-Ion battery. The 

forgetting factors were optimized using Genetic 

Algorithm (GA), and it was proved that the algorithm 

provided better performance than RLS with single 

forgetting factor [11]. An interesting result has been 

reported on the estimation of battery SOH using RLS 

without forgetting factor. Estimation speed and 

reliability have been compared between internal 

ohmic resistance based estimation and capacity based 

estimation. It can be concluded that SOH estimation 

based on internal resistance is faster and more reliable 

[12]. 

Many researchers have used PSO algorithm for 

estimating battery SOC in different ways. Support 

Vector Regression (SVR) was used to estimate SOC 

of a Lead-acid battery in which hyperparameters of 

the SVR are determined using PSO [13]. A hybrid 

model which combined multivariate adaptive 

regression splines (MARS) and PSO was used to 

estimate SOC of a LiFeMnPO4 battery cell. PSO was 

used to find the optimal parameters of the MARS 

model. As a result, SOC is represented by 29 pairs of 

basis functions and their coefficients [14]. Stepwise 

method considering multicollinearity was used to 

predict battery SOC. PSO was used to find optimum 

coefficient values, and the SOC can be expressed 

using 9 variables [15]. 

Some methods for concurrent estimation of battery 

SOC and SOH have been proposed. Dual Kalman 

Filter (DKF) was used for adaptive state and 

parameter estimation of Lithium-Ion batteries. 

Diffusion voltage, state of charge, and internal 

resistance are selected as state variables, while cell 

capacity, diffusion resistance, and diffusion 

capacitance are chosen as parameters. One Kalman 

filter is used for state estimation and the other Kalman 

filter is used for parameter values [16]. A hybrid 

battery model was proposed which consists of an 

enhanced Coulomb counting algorithm and an 

electrical circuit model. The Coulomb counting 

algorithm is used for SOC estimation while the 

electrical circuit model is used for electrical 

impedance estimation. Five parameters are used in the 

electrical model those are internal resistance, one pair 

of resistance and capacitance which governs short-

term dynamics, and one pair of resistance and 

capacitance which governs long-term dynamics. A set 

of nonlinear discrete time dynamic equations are 

formulated using battery terminal voltage and current 

as measured signals as well as six unknown 

parameters. The unknown parameters include internal 

resistance, open circuit voltage, two parameters as a 

function of short-term dynamical resistance and 

capacitance, and two parameters as a function of long-

term dynamical resistance and capacitance. PSO is 

used to find a set of values of the unknown parameters 

which minimizes the selected fitness function. The 

OCV is then used for SOC estimation using the 

enhanced Coulomb counting method [17].  

The DKF involves extended Kalman filter for 

parameter identification which adds computational 

burden. The use of PSO in the hybrid model requires 

execution of the PSO iteration independently to the 

SOC calculation routine which may rise a problem 

since there is no guarantee that the stopping criterion 

is fulfilled in the sampling period of SOC calculation.  

An adaptive algorithm which can estimate SOC 

and SOH concurrently and can work under single 

sampling time and less computing burden is necessary. 

In this paper, such requirement is answered by 

proposing a new algorithm named hybrid Recursive 

Least Square – Particle Swarm Optimization (RLS-

PSO). RLS is equipped with multiple fixed forgetting 

factors whose the values are tuned by PSO. PSO is 

simple and inexpensive computational effort 

compared to other artificial intelligence (AI) methods. 

The PSO is used to find the optimum values of these 

forgetting factors in an offline manner using AI to 

avoid the tedious effort instead of trial and error. Once 

optimum forgetting factor λ is obtained, the RLS will 

run online with these determined optimum forgetting 

factor. SOC is predicted based on Open Circuit 

Voltage (OCV) while SOH is predicted based on 

internal resistance. Moreover, in order to evaluate the 

performance of hybrid RLS-PSO, a hybrid RLS-GA 

(Single objective GA (SOGA)) which is a more 

common method and had already used by the author 

on previous paper is employed [11]. Furthermore, 

hybrid RLS with multi-objectives GA (MOGA) is also 

introduced.  

In Section II, battery dynamical model, RLS, and 

problem formulation described. Section III presents 

optimization methods to calculate values of forgetting 

factors using PSO, SOGA, and MOGA. Simulation 

results and discussion are reported in Section IV. 

Finally, conclusion is drawn in Section V. 

II. Modeling and problem formulation 

Figure 1 shows an equivalent circuit model using 

single RC [3]. 𝑉𝑡  and 𝐼 represent the battery terminal 

voltage and current, respectively. 𝑅0  is the battery 

internal resistance, 𝑅𝑝  is diffusion resistance, and 𝐶𝑝 

is diffusion capacitance. 𝑈𝑑  denotes the voltage drop 

in the diffusion resistance. 

By using a convention that the current is positive 

when it flows into the battery, the dynamics of the 

battery model can be expressed in the following 

discrete time equations. 

𝑈𝑑(𝑘) = −𝑎1𝑈𝑑(𝑘 − 1) + 𝑏0𝐼(𝑘) + 𝑏1𝐼(𝑘 − 1) (1) 

𝑉𝑡(𝑘) = 𝑈𝑑(𝑘) + 𝑂𝐶𝑉(𝑘)  (2) 

where: 

𝑅0 = 𝑏0;  𝑅𝑝 = (
𝑏1−𝑎1𝑏0

1+𝑎1
) ; 𝐶𝑝 = (

𝑇

𝑏1−𝑎1𝑏0
)  
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Terminal voltage and current are measurable, but 

𝑈𝑑(𝑘) and 𝑂𝐶𝑉(𝑘) can not be measured in real time 

manner. OCV of the battery is known to be a 

nonlinear function of its SOC [8]. The internal battery 

parameters are dependent on SOC and they are time 

varying in nature. 

Terminal voltage estimate �̂�𝑡(𝑘) can be expressed 

in the following linear equation.  

�̂�𝑘 = �̂�𝑡(𝑘) = �̂�𝑘
𝑇𝑥𝑘 (3) 

where the regressor 𝑥𝑘 and the parameter estimates �̂�𝑘 

are given below. 

𝑥𝑘 = [𝑈𝑑(𝑘 − 1); 𝐼(𝑘);  𝐼(𝑘 − 1);  1] 

𝜃𝑘 = [−𝑎1(𝑘); 𝑏0(𝑘);  𝑏1(𝑘);  𝑂𝐶𝑉(𝑘)] 

The measured terminal voltage is assumed to follow 

the following formula. 

𝑦𝑘 = 𝑉𝑡(𝑘) = �̂�𝑡(𝑘) + 𝑒𝑘 (4) 

The parameter estimates are calculated using RLS 

with multiple fixed forgetting factors (MFFF-RLS) as 

follows [18, 19]. 

𝑒𝑘 = 𝑦𝑘 − 𝑥𝑘 
𝑇 �̂�𝑘−1 (5) 

Kik =
Pik−1

xik

λi+xik
T Pik−1

xik

 (6) 

Pik = (1 − Kikxik
T )Pik−1  (7) 

Lk =
1

1+
P1k−1

x1k−1
2

λ1
+⋯+

Pik−1
xik−1
2

λi

[
 
 
 
 
 
P1k−1x1k−1

λ1

⋮
Pik−1

xik−1

λi ]
 
 
 
 
 

 (8) 

θ̂k = θ̂k−1 + Lkek (9) 

where subscript 𝑖 indicates the scalar components 𝑖 =
1, 2 . . . 𝑛. For the battery model addressed in this paper 

𝑛 = 4. 𝜆𝑖 denotes forgetting factor. By assuming that 

OCV changes faster than the internal parameters, it is 

reasonable to select different values of forgetting 

factors among them. 

A computer script code (m file in Matlab®) has 

been built to realize the MFFF-RLS algorithm 

according to the above description and formulae. The 

following performance index is used to evaluate the 

MFFF-RLS algorithm. 

𝐽0 =
1

𝑁𝑠
∑ {𝑉𝑡(𝑘) − �̂�𝑡(𝑘)}

2𝑁𝑠
𝑘=1  (10) 

SOC estimation is optimized using performance 

index 𝐽1 , while SOH estimation is optimized by 

performance index 𝐽2 as follows. 

𝐽1 =
1

𝑁𝑠
∑ (𝑂𝐶𝑉∗(𝑘) − 𝑂𝐶𝑉(𝑘))2
𝑁𝑠
𝑘=1  (11) 

𝐽2 =
1

𝑁𝑠
∑ (𝑅0

∗(𝑘) − 𝑅0(𝑘))
2𝑁𝑠

𝑘=1  (12) 

𝑂𝐶𝑉∗  and 𝑅0
∗  represent true values of OCV and 

internal resistance, respectively. 

The problem of determining optimum forgetting 

factor values is formulated as follows. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝐽1(𝜆𝑖)

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒:  𝐽2(𝜆𝑖)

𝑊ℎ𝑒𝑟𝑒: 
0 < 𝜆𝑖 < 1

𝐼(𝑘) 𝑖𝑠 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑈𝐷𝐷𝑆

 

}
 
 

 
 

 (13) 

III. Optimization methods using PSO and 

GA 

The optimization problem is solved using particle 

swarm optimization (PSO) and genetic algorithm 

(GA). Figure 2 shows the block diagram of the 

optimization method proposed in this paper. Three 

methods are elaborated i.e. optimization based on PSO 

(method 1), optimization based on SOGA (method 2), 

and optimization based on MOGA (method 3). Their 

results are analyzed and compared. 

PSO is a kind of evolutionary computation 

techniques which resembles the social behaviour of 

fish schooling or bird flocking. Its basic conceptual 

framework was originally proposed in 1995 for 

optimization of continuous nonlinear functions [20]. 

The term swarm was selected because it articulated 

well five basic principles of swarm intelligence in 

artificial life, those are the proximity principle, the 

quality principle, the principle of diverse response, the 

principle of stability, and the principle of adaptability. 

It involves cooperation and competition among 

individuals throughout generations. Each individual 

remembers the best position which had found, and the 

information of the global best position that an 

individual had found was shared to all members. Since 

then it has been experiencing various developments 

[21, 22].  

 In PSO, a particle represents a solution, and a 

swarm of particles is referred to as population of 

solutions. Each particle is characterized by its velocity 

and position. Every time a new position is achieved 

the best positions and velocities are updated. Each 

particle adjusts its velocity based on its experiences. 

The following equations are used in PSO to find 

optimum values of forgetting factors. 

𝜆0
𝑖 = 𝜆𝑚𝑖𝑛 + 𝑅𝑎𝑛𝑑(𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛)  (14) 

𝑣0
𝑖 =

𝜆0
𝑖

𝑡𝑠
 (15) 

𝑣𝑘+1
𝑖 = 𝑤𝑣𝑘

𝑖 + 𝑐1𝑅𝑎𝑛𝑑 (
𝑝𝑖−𝜆𝑘

𝑖

𝑡𝑠
) + 𝑐2𝑅𝑎𝑛𝑑 (

𝑝𝑘
𝑔
−𝜆𝑘

𝑖

𝑡𝑠
)(16) 

𝜆𝑘+1
𝑖 = 𝜆𝑘

𝑖 + 𝑣𝑘+1
𝑖 𝑡𝑠 (17) 

 

Figure 1. Single RC equivalent circuit model 
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𝜆𝑘
𝑖  and 𝑣𝑘

𝑖  represent the ith particle at time k of the 

positions and velocities, respectively. The upper and 

lower bounds on the positions are denoted by 𝜆𝑚𝑎𝑥  

and 𝜆𝑚𝑖𝑛 . Rand is a uniformly distributed random 

variable whose value is between 0 and 1. 𝑡𝑠 denotes a 

positive scalar. The initial positions 𝜆0
𝑖  and initial 

velocities 𝑣0
𝑖  are randomly generated by Equation (14) 

and (15). For the next iteration, velocities of each 

particle is given by Equation (16). 𝑝𝑖  is the best 

positions of each particle over time in current and all 

previous moves. 𝑝𝑘
𝑔

 is the best global positions of a 

certain particle in the current swarm with respect to a 

predefined fitness function. The new search direction 

incorporates three pieces of information which have 

each own weight factor. The first part is current 

motion which is multiplied by its inertia factor 𝑤. The 

second part is particle memory influence which is 

multiplied by its cognitive factor 𝑐1, and the third part 

is swarmed influence which is multiplied by its social 

factor 𝑐2. Position update of each particle is given by 

Equation (17). 

In order to minimize mean square error values of 

open circuit voltage and internal resistance, the 

following fitness function is used. 

Ft = αF1 + (1 − α)F2 (18) 

where 

F1 =
1

Ns
∑ (1 −

OCV(k)

OCV∗(k)
)
2

Ns
k=1  (19) 

F2 =
1

Ns
∑ (1 −

R0(k)

R0
∗ (k)

)
2

Ns
k=1  (20) 

0 < α < 1 (21) 

By normalizing performance indexes in Equation (11) 

and (12), their corresponding dimensionless fitness 

functions are obtained in Equation (19) and (20). The 

total fitness function in Equation (18) is a sum of the 

weighted normalized fitness functions. Values of the 

weight 𝛼 are listed in Table 1. 

Genetic Algorithm (GA) is an evolutionary 

algorithm which imitates evolution of living creature. 

Many variants of GAs exists depending on evaluation 

method of new chromosomes, a calculation method 

using serial or parallel processors, combination with 

some local optimization algorithms (hill climbing, etc), 

and other factors [23].  

A computer code script (m file in Matlab®) has 

been built to realize a GA according to the following 

procedure: First, define parameter values including 

number of initial population/chromosomes 𝑁𝑖𝑝 , 

number of genes in a chromosome is 4, boundary 

value of each gene (0 < 𝜆𝑖 < 1 ), and number of bits 

for each genotype to construct phenotype 𝑁𝑏 .Second, 

define probability rate values including selection 

probability rate 𝑃𝑠 , crossover probability rate 𝑃𝑐 , and 

mutation probability rate 𝑃𝑚. Each probability rate is 

divided into three sets which are generated randomly, 

namely small (random value from 0.1 to 0.3), medium 

(random value from 0.4 to 0.6), and large (random 

value from 0.7 to 0.9). Thus, there exist 27 sets of 

probability rate values which yield 27 best 

chromosomes from 27 different evolutions. Third, 

create initial random chromosomes. Fourth, evaluate 

fitness of each chromosome using fitness function in 

Equation (18), and select best individuals using 

ranking method. Fifth, create mating pool and 

generate offsprings by applying a single point 

crossover. Sixth, reproduce and ignore few 

chromosomes. Seventh, performs mutation by bit 

flipping operation randomly according to the mutation 

probability rate. Elitism principle is used to control 

mutation. Finally, back to step 4, until termination 

criterion is achieved. 

Method 1 and method 2 above are used to solve 

the single objective function in Equation (18). In order 

to solve the original multiple objectives optimization 

problem described in the problem formulation at the 

previous section, multiple objectives GA (MOGA) is 

also implemented. A fast elitist multiobjective GA 

known as nondominated sorting genetic algorithm II 

(NSGAII) is used to solve this problem since this 

algorithm has three advantages, i.e. a fast non-

dominated sorting procedure, a fast crowded distance 

estimation process, and a simple crowded comparison 

operator. The main loop of the NSGA II procedure is 

described below [24]. First, combine parent and 

offspring population and saved as 𝑅𝑡. Second, execute 

the fast non-dominated sorting procedure against 𝑅𝑡 , 
and save the result of all non-dominated fronts of 𝑅𝑡 
into 𝐹 = (𝐹1, 𝐹2, ⋯ ). Third, set initial values of parent 

population 𝑃𝑡+1 = 0 , and generation counter 𝑖 = 1 . 

Fourth, run iteration of generation until the parent 

population is filled and |𝑃𝑡+1| + |𝐹𝑖| ≤ 𝑁. Execute the 

crowded distance estimator in 𝐹𝑖 , include i-th non-

dominated front in the parent population, then check 

the next front for inclusion 𝑖 = 𝑖 + 1. Fifth, sort 𝐹𝑖 in 

 

Figure 2. The optimization method of forgetting factors values 

 

 
 

Table 1.  

Weight of finess function 

No 1 2 3 4 5 6 7 8 9 

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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descending order using the crowded comparison 

operator. Sixth, choose the first (𝑁 − |𝑃𝑡+1|) elements 

of 𝐹𝑖  and include them into the parent population. 

Seventh, use selection, crossover, and mutation to 

create offspring 𝑄𝑡+1 . Finally, increment the 

generation counter 𝑡 = 𝑡 + 1. More details about the 

algorithm can be seen in [24]. 

IV. Results and discussion 

In order to validate the proposed method, 

computer simulation has been conducted. The swarm 

size in PSO and initial population in GA is set to 64. 

The population size is chosen based on the crossover 

operation in GA, it is easier to choose a 2n number. 

Larger n needs more calculation time each iteration 

but yields smaller number of generation. Based on this 

consideration we choose n=6. For the sake of equality 

and comparability, the swarm size in PSO is chosen 

the same number.  

The optimization is executed iteratively until a 

termination criterion is achieved. Fitness function 

tolerance is set to 10e-6 while stall iteration is set to 50. 

For method 1, the cognitive factor and social factor 

are set 𝑐1 = 1.49 and 𝑐2 = 1.49. In order to maintain 

the speed of convergence while avoiding local optima, 

the inertia factor is changed linearly with iteration 

counter 𝑘 as follows. 

𝑤 = 𝑤𝑖 − 
(𝑤𝑖−𝑤𝑓)

𝑁
𝑘  (22) 

In this simulation, parameter values related to inertia 

factors are set as follows: 𝑤𝑖 = 1.1 , 𝑤𝑓 = 0.1 , and 

𝑁 = 50.  

Figure 3 shows trajectories of fitness function 𝐹𝑡 as 

a function of generation for 9 different weight values 

in Table 1. Figure 3(a) plots the results of method 1 

while Figure 3(b) those of method 2. In method 2, 

every single weight produces 27 sets of solutions 

according to the values of selection, crossover, and 

 

 

(a) 

 

(b) 

Figure 3. Trajectories of fitness function 𝐹𝑡; (a) PSO; (b) SOGA 
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mutation probability rates. The best solution is 

selected among 27 choices. Therefore, in Figure 3(b) 

we have 9 curves of the best-selected solutions. It is 

obvious that the value of weight affects the fitness 

function value significantly. The best result of method 

1 and method 2 in Figure 3 are plotted together in 

Figure 4. 

From Figure 4, some important results can be 

summarized as follows: First, the SOGA and PSO 

provide similar performance index values at the end of 

generation (after 52 iterations). Second, at the 3rd and 

4th generation, SOGA provides better performance 

than PSO. Third, the 5th generation, SOGA and PSO 

provide similar performance.  

Fourth, at the 6th generation, PSO gives better 

performance than SOGA, and this condition remains 

until the 43rd generation. During this condition, the 

performance difference is around 10-8 this implies that 

PSO provides better performance than SOGA in terms 

of less generation number.  

Depending on the engineering problem solved, a 

performance difference of 10-8 may be considered as 

substantially small, so that one may argue that SOGA 

and PSO have the same capability for solving 

optimization problem such as this paper. However, in 

this paper, the cognitive and social factor values of 

PSO are fixed. Investigation of the impact of different 

cognitive and social factor on the performance is left 

for further study. 

Figure 5 shows the Pareto front obtained by 

NSGA II. From this result, it can be seen that NSGA 

II provides several optimal solutions of the original 

multi-objectives optimization problem stated in 

Equation (13). In other words, this implies that NSGA 

II leaves the final decision to us to select a solution. In 

this paper, a solution is selected which gives the 

similar performance of fitness functions 𝐹1  and 𝐹2 

from PSO and SOGA above. Thus, 𝐹1 = 1.5733𝑒 − 6 

and 𝐹2 = 1.3829𝑒 − 6. 

In respect to the time consumed or a number of 

generation during iteration, the following results are 

obtained: First, PSO requires a smaller number of 

generation to yields better MSE performance than 

SOGA. Second, MOGA requires much longer time 

than PSO and SOGA because it computes Pareto front 

containing several numbers of optimum solutions. 

Table 2 lists up the forgetting factors obtained by 

PSO, SOGA, and NSGA II. These forgetting factors 

are used together with MFFF-RLS to estimate battery 

terminal voltage, OCV, SOC, and internal resistance 

𝑅0.  

Figure 6 shows battery terminal voltage and its 

estimation error during the UDDS testing using the 

forgetting factors in Table 2. Red line is the results of 

PSO, the blue line is the results of SOGA, and the 

green line is the results of NSGA II. Figure 7 shows 

the corresponding OCV while Figure 8 shows the 

corresponding SOC and its estimation error. Figure 9 

shows time history of internal resistance estimate 

�̂�0(𝑘) and its error 𝑒�̂�0(𝑘) = 𝑅0(𝑘) − �̂�0(𝑘).  
Table 3 lists performance index values obtained 

from these results. As expected PSO, SOGA and 

NSGA II give similar performances in terms of mean 

square error. However, PSO and MOGA provide a 

little better performance than SOGA in terms of OCV 

MSE value.  

 

 

Figure 4. The best performance index 𝐹𝑡 of PSO and SOGA 

 

 

Table 2. 

Forgetting factors obtained through optimization 

Method 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 

PSO 0.9298 0.0101 0.7171 0.2316 

SOGA 0.9395 0.0508 0.7489 0.2692 

NSGA II 0.9365 0.9185 0.8148 0.3062 

 

Table 3. 
Performance index value 

No 
Performance 

Index 

Values 

PSO SOGA NSGAII 

1 𝐽0 2.0574e-08 2.1339e-08 2.2961e-08 

2 𝐽1 2.4773e-05 2.4912e-05 2.4339e-05 

3 𝐽2 1.1559e-11 1.1559e-11 4.1533e-10 
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Figure 5. Pareto front of NSGA II 

 

 

 

(a) 

 

 

(b) 

Figure 6. Tracking performance of various methods; (a) Terminal voltage; (b) estimation error 
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Figure 7. Open circuit voltage 

 

 

(a) 
 

 

(b) 

Figure 8. Tracking performance of various methods; (a) Time history of state of charge; (b) SoC error 
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V. Conclusions 

From the computer simulation results, the 

following conclusion can be drawn. By selecting 

proper probability rates of selection, crossover, and 

mutation, SOGA was able to produce almost similar 

performance with PSO in terms of MSE. Considering 

the number of generation, PSO provides better 

performance than SOGA in terms of less generation 

number. MOGA provides Pareto fronts containing 

optimum solutions where a specific solution can be 

selected to have MSE performance as good as PSO. 

However, the MOGA requires much longer time than 

PSO and SOGA because it computes Pareto fronts 

containing several numbers of optimum solutions. 
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