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Abstract 

The use of sensorless technology at BLDC is mainly to improve operational reliability and play a role for wider use of BLDC 
motors in the future. This research aims to predict load changes and to improve the accuracy of estimation results of sensorless-

BLDC. In this paper, a new filtering algorithm is proposed for sensorless brushless DC motor based on ensemble Kalman filter 
(EnKF) and neural network. The proposed EnKF algorithm is used to estimate speed and rotor position, while neural network is 

used to estimate the disturbance by simulation. The proposed algorithm requires only the terminal voltage and the current of 
three phases for estimated speed and disturbance. A model of non-linear systems is carried out for simulation. Variations in 

disturbances such as external mechanical loads are given for testing the performance of the proposed algorithm. The 
experimental results show that the proposed algorithm has sufficient control with error speed of 3 % in a disturbance of 50 % of 

the rated-torque. Simulation results show that the speed can be tracked and adjusted accordingly either by disturbances or the 
presence of disturbances.  

©2019 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences. This is an open access article 
under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/).  

Keywords: ensemble Kalman filter; neural network; sensorless; brushless DC motor. 

 
 

I. Introduction 

Brushless DC (BLDC) Motor is a direct current 
motor which is electronically controlled because it 
does not use a brush. Currently, BLDC motors have 
been global utilization in many manufacturing 
because of their superior peculiars, like big starting 
torque, great efficiency, low noise during function 
and high ability to withstand wear, pressure, or 
damage. These advantages have made BLDC motor to 
be widely used in electric vehicles, computers (hard 
disks, fans) and medical equipment [1][2][3]. The 
electric commutator on BLDC motor uses an inverter 
and assists the position sensor to catch the position of 
the rotor as a reference for proper current change. 
This is done in the line of the commutator function 
and the use of brushes on DC motors. The BLDC rotor 
rotation is a representation of the rotor position 
measured by the position sensor (usually using a hall 
sensor) and generally uses three hall sensors to get a 

perfect rotation. However, the installation of the hall 
sensor causes several problems when adding sensors 
that can reduce the reliability and robustness of the 
system, difficult installation and maintenance, and 
increase the physical size and overall costs [4]. 

To overcome this problem, in recent years, many 
researchers have focused on sensorless BLDC controls. 
The use of sensorless technology at BLDC is mainly to 
improve operational reliability and play a role for 
wider use of BLDC motors in the future. One method 
that is widely used in sensorless techniques is back-
EMF. In principle, this method detects back-EMF 
BLDCM and is used as a commutation point in 
accordance with the liaison between back-EMF and 
rotor position. Many Back-EMF methods have been 
developed such as the third harmonic from back-EMF 
sensing [5][6], back-EMF integration [7], line to line 
voltage sensing [8][9], filtering phase [10][11] and 
terminal voltage sensing [12][13]. However, all of 
these methods have problems at low speeds because 
the back-EMF amplitude is too small to be detected. 
The other sensorless method is Flux Calculation 
Method [14], but it also has problem of accumulating 
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integration errors at low speeds, as the previously 
proposed method. This method also requires 
considerably computing costs and is susceptible to 
parameter variations, so this complicated algorithm 
requires costly floating point processors. Another 
sensorless method developed by researchers is the 
use of observer functions. Meanwhile, a popular type 
of observer used to approximate the BLDC rotor 
position is the extended Kalman filter (EKF) [15]. 
However, this method has several disadvantages, 
including complicated calculations from the Jacobian 
matrix, only first order-accuracy, etc. To cover the 
drawback of the EKF algorithm, especially in the use 
of Jacobian matrix, EnKF algorithm has been 
developed [16]. In predicting rotor position, the EnKF 
algorithm no longer uses Jacobian matrix but uses 
ensemble integration method or better known as the 
Monte Carlo algorithm. Meanwhile, the prediction of 
mathematical problem used in the EnKF algorithm is 
Fokker-Planck mathematical problem. Related 
applications of EnKF have been reported in [16] 
where the use of observers as predictors of the BLDC 
rotor position, a mathematical model from BLDC is 
needed. However, the BLDC motor drive has a non-
linear nature so that it is quite difficult to get accurate 
mathematical models for motors by using 
conventional techniques. In addition, with increasing 
usage period and difficulty in calculating non-linear 
parameters, motor properties are often unknown to 
the changes in load, disturbance, point of saturation, 
and BLDC parameters. 

Unlike [16] which has not included fluctuation in 
load on the BLDC, this paper uses neural network 
algorithm to predict load changes based on current 
changes that occur in the BLDC and is used in the EnKF 
algorithm to improve the accuracy of estimation 
results. The neural network is used because of its 
ability to model nonlinear systems. The research was 
conducted by simulation of algorithm calculation 
using MATLAB. Simulation results show that the 
speed can be tracked and adjusted accordingly either 
by disturbances or the presence of disturbances. 

II. Materials and Methods 

A. Mathematical model of the BLDC in sensorless 
mode 

The BLDC motor is modelled by approaching two 
main numerical conditions. One numerical condition 
is for electricity and the other one is for mechanical 
parts. The specifics of numerical conditions are given 
in [15]. Four state variables in these equations are 
motor shaft speed and motor current, i.e. ia, ib, and ic. 
The motor's mechanical, electrical, and load 
equations are combined as a matrix form as follows: 

𝑑

𝑑𝑡
[

𝑖𝑎
𝑖𝑏
𝑖𝑐


] = [

𝐴11 0
0 𝐴22

0 𝐴14
0 𝐴24

0 0
𝐴41 𝐴42

𝐴33 𝐴34
𝐴43 𝐴44

] [

𝑖𝑎
𝑖𝑏
𝑖𝑐


] +

[

𝐵11 0
0 𝐵22

0 0
0 0

0 0
0 0

𝐵33 0
0 𝐵44

] [

𝑣𝑎
𝑣𝑏
𝑣𝑐
𝑇𝑚

] (1) 

with 

𝐴11 = 𝐴22 = 𝐴33 =
−𝑅𝑠
𝐿𝑠

 

𝐴14 = −
𝜆𝑚
𝐿𝑠
𝐹(𝜃𝑒) 

𝐴24 = −
𝜆𝑚
𝐿𝑠
𝐹 (𝜃𝑒 +

4𝜋

3
) 

𝐴34 = −
𝜆𝑚
𝐿𝑠
𝐹 (𝜃𝑒 −

4𝜋

3
) 

𝐴41 =
𝜆𝑚
𝐽
𝐺(𝜃𝑒) 

𝐴42 =
𝜆𝑚
𝐽
𝐺 (𝜃𝑒 +

4𝜋

3
) 

𝐴43 =
𝜆𝑚
𝐽
𝐺 (𝜃𝑒 −

4𝜋

3
) 

𝐴44 = −
𝐵

𝐽
 

𝐵11 = 𝐵22 = 𝐵33 =
1

𝐿𝑠
 

𝐵44 =
1

𝐽
 

where V𝑎 is the phase a terminal voltage, the phase 
resistance, the phase current and the phase 
inductance are Rs, i𝑎, and Ls, respectively. In particular, 
for phase b and c, we have similar voltage equations. 
J is inertia, B is friction coefficient, Tm is load torque, 

and m is magnet flux linkage of the stator winding. 
The nonlinear function G(𝜃) can be described as 
follows: 

𝐺(𝜃) =

{
 
 
 

 
 
 

6

𝜋
𝜃 0 < 𝜃 ≤

𝜋

6

1
𝜋

6
< 𝜃 ≤

5𝜋

6

−
6

𝜋
(𝜃 − 𝜋)

5𝜋

6
< 𝜃 ≤

7𝜋

6

−1
6

𝜋
(𝜃 − 2𝜋)

7𝜋

6
< 𝜃 ≤

11𝜋

6
11𝜋

6
< 𝜃 ≤ 2𝜋

 (2) 

The main idea of an estimation system in 
sensorless mode is to use a mathematical model 
derived from the BLDC to calculate the estimated 
value of the output parameters from the measured 
input parameters. Figure 1 shows the system 

operation block diagram of a BLDC sensorless speed 
control motor using estimator. The extended Kalman 
filter (EKF) is one type of common estimator, which is 
used to estimate the BLDC motor's system state 
variables and stator resistance immediately using the 
actual voltages and currents derived from the BLDC 
motor's mathematical model. In some cases, there is 
likewise some constraint in using EKF as an observer, 
for example, the characteristics of EKF that must be 
executed as first request accuracy, high multifaceted 
computing to calculate the Jacobian matrix and its 
covariance matrix. 

For example in equation (1), mathematic model of 
the BLDC motor need Tm as input whereas, in reality, 
this load (Tm) can not be measured directly. 
Meanwhile, in sensorless mode, the algorithm 
involves only the voltage and current BLDC motor 
terminals and does not involve any Tm, thus, if there 
is any Tm, it can cause an error of the estimate because 
one of the input is ignored. Figure 2 shows the 
estimation error. In two seconds, the load changes 
from 0 to 2 Nm and it can be seen that the estimation 
experiences an error. Therefore, we proposed the 
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EnKF and neural network algorithm as part of 
predicting the amount of Tm by changes in voltage 
and current that occurs in this paper. 

B. EnKF and neural network algorithm 

Figure 3 shows the EnKF and neural network block 
diagram of the framework activity of a speed control 
sensorless BLDC motor. The EnKF as an estimator 

reckons, the rotor speed () and the rotor position (). 
The rotor speed (), which is in a sensorless system is 
provided from the estimator and compared with the 

speed reference (ref) to produce the speed error 
signal (error). The resulting error is given to the 
controller. The controller will calculate this speed 
error signal (e) into a control command (u). Then, the 
voltage and current generated by the inverter is 
measured and used as input to block the neural 
network (NN) to estimate the Tm. Afterwards, the 
measured voltage and current and the estimated Tm 
resulted from the neural network are used as input to 
EnKF which ultimately results in the prediction of 
motor position and speed. 

1) Ensemble Kalman filter 

The EnKF estimation system uses ensemble 
integration methods to solve the Fokker-Planck 
equation or also referred to as suboptimal where 
error statistics are predicted using Monte Carlo. In 

updating the filter gain �̂�𝑘 , the EnKF system does not 
involve estimating nonlinear functions f(x, u) and 

h(x). This is what distinguishes the EKF system in 
general, so that large computation in calculating the 
Jacobians of f(x, u) and h(x) is not used anymore in the 
EnKF system. The beginning stage for the EnKF 
estimation system as particle filters is the selection of 
a set of sample points, which is an ensemble of state 
estimations that captures the initial probability 
distribution of the state. These state estimation points 
are then engendered through the true nonlinear 
system, with the goal that the likelihood density 
function of the actual state can be approximated by 
the ensemble of the estimation system (EnKF). 

The EnKF estimation method consists of three 
stages. The first step is called the forecast step, where 

the representation of the system’s error statistics is 
gained by assuming that an ensemble of q forecast 
state estimates with random sample errors is 

available at time k. We denote this ensemble as 𝑋𝑘
𝑓
∈

𝑅𝑛𝑥𝑞 where 

𝑋𝑘
𝑓
≜ (𝑥𝑘

𝑓1 , 𝑥𝑘
𝑓2 ,⋯ , 𝑥

𝑘

𝑓𝑞
) (3) 

with the subscript fi refers to the i-th forecast 

ensemble member. Then, the ensemble mean �̅�𝑘
𝑓
∈ 𝑅𝑛 

is defined by 

�̅�𝑘
𝑓
≜

1

𝑞
∑ 𝑥𝑘

𝑓𝑖𝑞
𝑖=1  (4) 

Since the true state xk is unknown, we approximate 
(4) by using the ensemble members. We define the 

 

Figure 1. Block diagram of sensorless BLDC motor 

 

Figure 2. Performance curves of speed and load change before using neural network 
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ensemble error matrix 𝐸𝑘
𝑓
∈ 𝑅𝑛𝑥𝑞  around the 

ensemble mean by 

𝐸𝑘
𝑓
≜ [𝑥𝑘

𝑓1 − �̅�𝑘
𝑓
⋯𝑥𝑘

𝑓𝑞 − �̅�𝑘
𝑓
] (5) 

and the ensemble of the output error Eyk
a ∈ Rpxq by 

𝐸𝑦𝑘
𝑎 ≜ [𝑦𝑘

𝑓1 − �̅�𝑘
𝑓
⋯𝑦𝑘

𝑓𝑞 − �̅�𝑘
𝑓
] (6) 

We approximate the 𝑃𝑘
𝑓
 by �̂�𝑘

𝑓
, the 𝑃𝑥𝑦𝑘

𝑓
by �̂�𝑥𝑦𝑘

𝑓
, and the 

𝑃𝑦𝑦𝑘
𝑓

by �̂�𝑦𝑦𝑘
𝑓

, respectively, where 

�̂�𝑘
𝑓
≜

1

𝑞−1
𝐸𝑘
𝑓
(𝐸𝑦𝑘

𝑓
)
𝑇
, �̂�𝑦𝑦𝑘

𝑓
≜

1

𝑞−1
𝐸𝑦𝑘
𝑓
(𝐸𝑦𝑘

𝑓
)
𝑇
 (7) 

Therefore, we construe the forecast ensemble as 
the best forecast estimation of the state, while the 
distribution of the ensemble members around the 
average as the fault between the best estimation and 
the actual state. The second step is the analysis step. 
The EnKF carries out an ensemble of q parallel data 
assimilation cycles to obtain the state's analysis 
estimation, where for i = 1, 2, 3, …, q 

𝑥𝑘
𝑎𝑖 = 𝑥𝑘

𝑓𝑖 + �̂�𝑘 (𝑦𝑘
𝑖 − ℎ(𝑥𝑘

𝑓𝑖)) (8) 

The perturbed observations yk
i  are given b 

𝑦𝑘
𝑖 = 𝑦𝑘 + 𝑣𝑘

𝑖  (9) 

where 𝑣𝑘
𝑖  is a zero-mean disordered variable with a 

normal distribution and covariance Rk. The sample 

fault of the covariance matrix computed from the 𝑣𝑘
𝑖  

converges to Rk as q →  . We approximate the 
analysis of the fault of the covariance matrices 𝑃𝑘

𝑎 by 

�̂�𝑘
𝑎, where 

�̂�𝑘
𝑎 ≜

1

𝑞−1
𝐸𝑘
𝑎𝐸𝑘

𝑎𝑇 (10) 

And 𝐸𝑘
𝑎 is defined by with 𝑥𝑘

𝑓𝑖  replaced by 𝑥𝑘
𝑎𝑖 and �̅�𝑘

𝑓
 

replaced by the mean of the analysis estimate 
ensemble members. We use the classical Kalman 
filter gain expression and the approximations of the 

error covariances to determine the filter gain by �̂�𝑘  by 

𝑥𝑘+1
𝑓𝑖 = 𝑓(𝑥𝑘

𝑎𝑖 , 𝑢𝑘) + 𝑤𝑘
𝑖  (11) 

The last step is the prediction of error statistics in 
the forecast step: 

𝑥𝑘+1
𝑓𝑖 = 𝑓(𝑥𝑘

𝑎𝑖 , 𝑢𝑘) + 𝑤𝑘
𝑖  (12) 

where the values are 𝑤𝑘
𝑖 sampled from a normal 

distribution with average zero and covariance 𝑄𝑘 . The 

sample error covariance matrix computed from the 

𝑤𝑘
𝑖  converges to 𝑄𝑘  as 𝑞 → . Finally, we summarize 

the analysis and forecast steps. 
Analysis steps were included equation (13) to 

equation (15). 

�̂�𝑘 = �̂�𝑥𝑦𝑘
𝑓
(�̂�𝑦𝑦𝑘

𝑓
)
−1

 (13) 

𝑥𝑘
𝑎𝑖 = 𝑥𝑘

𝑓𝑖 + �̂�𝑘 (𝑦𝑘
𝑖 − ℎ(𝑥𝑘

𝑓𝑖)) (14) 

�̅�𝑘
𝑎 =

1

𝑞
∑ 𝑥𝑘

𝑎𝑖𝑞
𝑖=1  (15) 

Forecast steps were included equation (16) to 
equation (20). 

𝑥𝑘+1
𝑓𝑖 = 𝑓(𝑥𝑘

𝑎𝑖 , 𝑢𝑘) + 𝑤𝑘
𝑖  (16) 

�̅�𝑘+1
𝑓

=
1

𝑞
∑ 𝑥𝑘+1

𝑓𝑖𝑞
𝑖=1  (17) 

𝐸𝑘+1
𝑓

= [𝑥𝑘+1
𝑓1 − �̅�𝑘+1

𝑓
⋯𝑥𝑘+1

𝑓𝑞 − �̅�𝑘+1
𝑓
] (18) 

𝐸𝑦𝑘
𝑎 ≜ [𝑦𝑘

𝑓1 − �̅�𝑘
𝑓
⋯𝑦𝑘

𝑓𝑞 − �̅�𝑘
𝑓
] (19) 

�̂�𝑥𝑦𝑘
𝑓
=

1

𝑞−1
𝐸𝑘
𝑓
(𝐸𝑦𝑘

𝑓
)
𝑇
, �̂�𝑦𝑦𝑘

𝑓
=

1

𝑞−1
𝐸𝑦𝑘
𝑓
(𝐸𝑦𝑘

𝑓
)
𝑇
 (20) 

2) Neural-network algorithm 

The new modelling tool for a very well-known 
estimate is artificial neural networks, specifically 
used for complex and non-linear systems. Artificial 
neural networks do not require knowledge of the 
internal work processes of the system to be modelled 
so that they are usually used as black box models. But 
they only need learning from the input-output 
vectors produced by the experiment which are 
commonly called learning sets and represent the 
system for the model. Rumelhart proposed a back 
propagation learning method for the neural network 
learning process [17]. In this method, errors from the 
output of neural networks to learning data are formed 
into error functions and processed to a minimum. In 
the process of minimizing the function of this error, 
network parameters are updated with the principle 
opposite to the error function gradient. 

In this paper, we use various load as inputs and 
current and voltage as outputs for data learning set. 
Figure 4 shows the neural network test result. This 
figure clearly shows that the estimated value of the 
neural network is in accordance with the actual value 
of the mean-sum-error (MSE) is 5.7311 × 10-5. 

 

Figure 3. Block diagram of EnKF- neural network sensorless BLDCM 
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III. Results and Discussions 

In this section, we present a sensorless velocity 
estimation and control system and simulation using 
MATLAB. The parameters of the BLDC motor are set 
with the following parameter, i.e. the stator 
resistance 𝑅s = 79 Ω, the inductance of the stator Ls 
=12×10-3 H, each permanent magnet flux maximum 
phase winding 𝜑𝑚 = 0.0271 Wb, the inertia 𝐽 = 0.48 
×10-3 kg.m2, the viscous friction coefficient 𝐵𝑣 is zero, 
poles of the permanent magnet 𝑝 = 4, rated-torque 
0.125 Nm, simulation step length 𝑇 = 1 × 10-4 s, 𝑥0 = 
[0 0 0 0 0]𝑇 and number of ensemble is 10. Based on 
mathematical Equation (1) to get the prediction ω, the 

data needed are ia, ib, ic, ω, va, vb, vc, and Tm at the 
previous time.  

The prediction process is done by using the EnKF 
algorithm. In this case, ia, ib, ic, va, vb, and vc, are 
obtained from direct measurements and quickly 
sampling 10 times to get 10 ensembles, while ω is the 
initial position and Tm is the estimated result of the 
neural network part. To substantiate the estimated 
performance of our algorithm, two treatments are 
performed to verify the performance of the velocity 
and the modification load. 

In this example, the reference speed modifies 
from 1600 𝑟𝑝𝑚 to 2400 𝑟𝑝𝑚 at time 𝑡 = 1 𝑠. Then, the 
load torque Tm = 0.07 𝑁𝑚 is added to this motor at 

 
Figure 4. Performance of the neural network  

epoch

er
ro

r

 

Figure 5. Performance curves of speed and load change after using neural network  

 

Figure 6. Performance of rotor position of speed and load change 
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time 𝑡 = 2 𝑠. The experiment results (i.e. the 
performance curves) are obtained and presented in 
Figure 5 and Figure 6. From Figure 5, we can see that 
when the reference speed become different or the 
load become different, the evaluated and the real 
speed are nearly the same. The error between the 
estimated speed and the actual rate is approximately 
3 %.  

The ripple cannot be eliminated due to the 
interaction of the estimated EnKF and neural network 
but within an acceptable tolerance of 3 %. The 
designed EnKF and neural network algorithm can be 
concluded that it is very effective when the speed or 
torque changes suddenly. From Figure 6, it can be 
seen the evaluated and the real rotor position are 
almost identical. And the error is approximately 2 
electrical angle confirming that the motor can 
operate normally with a small torque ripple. The 
results of the experiments show the efficacy of our 
filtering algorithm. 

Conclusion 

In this paper, to operate a sensorless BLDC motor, 
we developed a new estimation system for rotor 
speed and rotor position speed using an ensemble 
Kalman filter (EnKF) and neural network. It is clear 
that the precise estimation performance can be 
obtained from the simulation results and the 
efficiency of our designed algorithm can be illustrated. 
With a disturbance of 50 % of the rated-torque, the 
proposed algorithm is able to maintain motor speed 
with a speed error of 3 % and error estimated position 
is approximately 2 electrical angle. Additionally, the 
sensorless BLDC motor can also be precisely 
controlled according to the designed algorithm of 
EnKF and neural network. 
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