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Abstract 

The main issue of using a permanent magnet in electric machines is the presence of cogging torque. Several methods have 
been introduced to eliminate it, one of which is by employing a coreless stator. In this paper, the load characteristic analysis 

of the double-side internal coreless stator axial flux permanent magnet generator with the specification of 1 kW, 220 V, 50  Hz, 

300 rpm and 1 phase is discussed. The purpose is to learn the effect of the load to the generator performance, particularly the 
output power, efficiency and voltage regulation. The design and analysis are conducted analytically and numerically with two 

types of simulated loads, pure resistive and resistive-inductive in series. Each type of load provides power factor 1 and 0.85 
respectively. The simulation results show that when loaded with resistive load, the generator gives a better performance at 

the output power (1,241 W) and efficiency (91 %), whereas a better voltage regulator (5.86 %) is achieved when it is loaded 
with impedance. Since the difference in the value of each parameter being compared is relatively small, it can be concluded 

that the generator represents good performance in both loads.  

©2019 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences. This is an open access 

article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/). 

Keywords: coreless stator; axial flux permanent magnet generator; load characteristics; resistive load; resistive-inductive in 
series. 

 
 

I. Introduction 

Axial-flux permanent magnet generators (AFPMG) 
offer several benefits, among others, can be made in 
various alternative topologies [1] and have high 
power density [2][3]. Their application is not only in 
the electricity generation sector but also in electric 
vehicles, industrial equipment [4], aircraft, compact 
engine generator, and battery charging [5].  

The stator of AFPMG can be built with or without 
iron core. The latter gives some more advantages 
since it is lighter than the construction of using core, 
eliminates cogging torque, easy to manufacture, 
because it does not need lamination and eliminates 
magnetic forces to the rotor disc [6] as well as having 
high efficiency [5][7]. Several types of research on the 

AFPM coreless stator have been conducted and most 
of them are used in wind turbine applications. 
Reference [6] analyzes a double-sided coreless-stator 
24 poles and 18 coils AFPMG. The best generator 
performance can be obtained by varying stator 
thickness and diameter. The highest efficiency is 
91.8 % acquired from the combination of the stator 
thickness and diameter of 8 mm and 150 mm. 

Design and analysis of three rotors and double 
stators coreless AFPMG are observed in [8]. By 
configuring 12 poles in each rotor and 9 coils in each 
stator, the generator can produce 1.8 kW and 120 V at 
500 rpm. Three rotors are used instead of 4 so that 
reducing the iron loss and the generator weight. A 
similar pole configuration is found in [9], which is 12 
permanent magnet at each of the rotor core (double 
rotors) and 9 coils in the stator (single stator). The 
simulation results indicate that the 500 rpm coreless 
AFPMG can generate nearly sinusoidal voltage and 
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current waveforms. The amplitude of the waveforms 
is 100 V and 5 A respectively. In reference [10], design 
and prototyping of 3 phase, coreless AFPMG with two 
rotors and one stator is investigated. The 
configuration of 20 poles on the rotors and 18 coils on 
the stator is employed. The measurement test at 300 
rpm yields terminal voltage, output power, and 
efficiency, respectively are 200 V, 200 W, and 94.2 %. 

The paper discussed the load characteristics of a 
220 V, 1 kW, 50 Hz, 300 rpm 1 phase coreless axial 
flux generator. The simulation is conducted 
analytically and numerically by employing pure 
resistive load as well as resistive-inductive loads in 
series. The aim of this research is studying the effect 
of the load, mainly on the generator output power, 
efficiency, and voltage regulation. In addition to the 
load characteristics, the magnetic flux distribution 
and air gap flux density simulated using FEMM 4.2 
software will also be presented. 

II. Materials and Methods 

A. The design feature of the machine 

The generator topology, dimensions, and main 
parameters are illustrated in Figure 1 and Table 1 
respectively. The rotor is the rotating part of a 
generator where the permanent magnets are 
arranged on the inside (Fig. 1a). The stator is the 
stationary part and the place for the winding (Fig. 1b). 
The stator and rotor are integrated through a shaft to 
produce electricity. The constructions of the studied 
double rotor single coreless stator, as well as its 
dimensions in the axial direction, are shown in Fig. 1c 
and Fig. 1d respectively.  

B. The magnetic field in coreless AFPMG 

The flux paths of the double-sided rotors internal 
coreless stator AFPMG is depicted in Fig. 2. The stator 
is made without core (coreless) and the rotor is made 
of carbon steel. The flux leave north pole (permanent 
magnet 1) across stator and air gap to the south pole 
(permanent magnet 2) and then splits into two equal 
sections, one of them travels toward south poles of 
permanent magnet 3, and then passing through the 
stator as well as air gap to the south pole of 
permanent magnet 4, as shown by arrow signs. 

NdFeB has been used as the permanent magnet 
with Br = 1.030 T and the coercive field strength Hc = 
796 kA/m. moreover, Air gap flux density (Bmg) and 

magnetic flux (f) are stated at equation (1) and 
equation (2) [11][12], 

Table 1.  

The dimension of the generator parts 

Parameter Unit  

Outer rotor disc radius, Rro 200 (mm) 

Inner rotor disc radius, Rri  115 (mm) 

Winding thickness, tw 4 (mm) 

Rotor yoke thickness, Ly 60 (mm) 

Number of turns, N1 340 turn 

Number of poles, 2P 20 poles 

Number of parallel conductor, aw  2 

Wire diameter, dw 0.8 (mm) 

Shaft radius, Rsh 30 (mm) 

Permanent magnet axial height, hm 40 (mm) 

Inner permanent magnet arc, Wpi 28.9 (mm) 

Outer permanent magnet arc, Wpo 50.27 (mm) 

Permanent magnet length, Lp 85 (mm) 

Air gap length, lg 3 (mm) 

 

 

(a) 
 

(b) 

 
(c) 

 
(d) 

Figure 1. Generator dimensions; (a) rotor; (b) stator and its winding configuration; (c) three dimensional coreless AFPMG; (d) front view 
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𝑩𝐦𝐠 =
𝑩𝐫

𝟏+[
𝝁𝐫𝐫𝐞𝐜(𝒈+𝟎.𝟓𝒕𝐰)

𝒉𝐦
]𝒌𝐬𝐚𝐭

 (1) 

𝜙f = 𝛼i𝐵mg
𝜋

8𝑝
(𝐷ro

2 −𝐷ri
2 ) (2) 

where Br is the remanence flux (T), rrec is the relative 
permeability of permanent magnet, g is the axial 
length of the air gap (mm), tw is the winding thickness 
(mm), hm is the axial height of the permanent magnet 
(mm), ksat is the saturation factor, αi is the ratio of pole 
face width to the pole pitch at average radius, Dro and 
Dri are the outer and inner diameter of rotor disc 
(mm), and p is the number of pole pairs. 

C. Single phase equivalent circuit 

The equation to identify the number of stator turn 
per phase (N1) and the voltage induced by the rotor 
when it rotation (Ef) is given by [11] 

𝑁1 =  
𝜀𝑉1

𝜋√2𝑓𝑘w1𝜙f
 (3) 

and 

𝐸f =  √2𝑓𝑁1𝑘w1𝜙f (4) 

where f is the frequency = 50 Hz, V1 is the terminal 

voltage of generator (V),  > 1 for generating mode, 
kw1 is the winding factor at fundamental harmonic. 

Fig. 3 is the equivalent circuit of AFPMG. When the 
generator runs and connected to a load, the induced 
current (Ia) starts flowing in the stator winding, 
generates magnetomotive force and interacts with 
the main field produced by the rotor causing a change 
in direction and magnitude of the magnetic flux in the 
air gap. This is usually called an armature reaction. 
The armature reaction voltage lags the current by 90° 
and is presented by (-jIadXsd) + (-jIaqXsq). The current 
Iad produces maximum air gap field aligned with the 
rotor pole (d-axis), and Iaq aligned with the q-axis 
(between poles). The stator coil has resistance R1 and 
leakage reactance X1. 
The value of R1 is found with equation (5) 

𝑅1 =  
𝑁1𝑙1𝑎v

𝑎p𝑎w𝜎 𝑠a
 (5) 

with l1av is the average length of the stator turn (m), 
ap is the number of the parallel current paths, aw is the 

number of parallel conductors,  is the electric 

conductivity of armature conductor (S/m), and Sa is 
the conductor cross section (m2).  

The sum of the armature or mutual reactance Xa 
and X1 yields synchronous reactance Xs, stated with  

𝑋sd =  𝑋ad +  𝑋1 (6) 

𝑋sq =  𝑋aq + 𝑋1 (7) 

where d and q represent the d- and q-axis 
respectively.  

For coreless stator, the leakage reactance is 

assumed close to 0, so that Xsd ≈ Xad, and Xsq ≈ Xaq. 
Furthermore,  

𝑋ad = 2𝑚1𝜇0𝑓(
𝑁1𝑘w1

𝑝
)2 (𝑅ro

2−𝑅ri
2)

𝑔𝑑
′ 𝑘fd (8) 

𝑋aq = 2𝑚1𝜇0𝑓(
𝑁1𝑘w1

𝑝
)2 (𝑅ro

2−𝑅ri
2)

𝑔𝑞
′ 𝑘fq (9) 

where m1 is the phase number, 0 is the permeability 
of vacuum, g'd and g'q is the d- and q-axis equivalent 
air gap length respectively, kfd and kfq is the form 
factor in the d- and q-axis consecutively, with kfd and 
kfq equal to 1 for surface configuration of a permanent 
magnet.  
The armature current is  

𝐼a =  𝐼ad + 𝐼aq (10) 

If the generator is connected to an electrical load, 
then 

 

Figure 2. The geometry and magnetic flux path of double-sided 

rotors internal coreless stator AFPMG 

 

Figure 3.Single phase equivalent circuit of AFPMG [11] 

 

Table 2. 

The resistive and inductive load 

Cos 𝛟 = 1  Cos 𝛟 = 0.85 

RL() XL () RL() XL () 

400 0 400 247.895 

360 0 360 223.105 

320 0 320 198.316 

280 0 280 173.526 

240 0 240 148.737 

200 0 200 123.947 

160 0 160 99.158 

120 0 120 74.368 

80 0 80 49.579 

40 0 40 24.789 

  30 18.592 
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𝐼ad =  
𝐸f(𝑋sq+ 𝑋L)

(𝑋sd+ 𝑋L)(𝑋sq+ 𝑋L)+(𝑅1+ 𝑅L)2 (11) 

𝐼aq =  
𝐸f(𝑅1+ 𝑅L)

(𝑋sd+ 𝑋L)(𝑋sq+ 𝑋L)+(𝑅1+ 𝑅L)2
 (12) 

where RL and XL are the load resistance and reactance 

in  consecutively. 

D. Output power and voltage regulation 

The terminal voltage (𝑉1) and output power (Pout) 
due to the load impedance (ZL) are calculated with  

𝑉1 =  𝐼a𝑍L (13) 

𝑃out =  𝑚1𝑉1𝐼a cos 𝜙  (14) 

𝜙 = arccos (
𝐼a𝑅l

𝑉1
) = arccos (

𝑅l

𝑍L
) (15) 

where ZL is the load impedance and 𝜙  is the power 
factor angle.  

The simulated loads RL and XL that give two 
different load power factor (PF) 1 and 0.85 are listed 
in Table 2. The percentage change in the output 
voltage from no-load (Vnl) to full-load (Vfl) when the 
generator is loaded by unity, lagging and leading 
power factor, or also called as voltage regulation VR is 
obtained using equation (16) [13], 

𝑉𝑅 =  
𝑉nl− 𝑉fl

𝑉fl
𝑥 100 % (16) 

Generator losses including winding loss P1 (W), 

eddy current loss Pe (W) and rotational loss Prot (W) 
are presented by, 

Ʌ𝑃1 =  𝑚1𝐼a
2𝑅1 (17) 

Ʌ𝑃e =  
𝜋2

4

𝜎

𝜌
𝑓2𝑑2𝑚con[ 𝐵mx1

2 + 𝐵mz1
2 ]𝜂d

2 (18) 

⧍𝑃rot =  ⧍𝑃fr +  ⧍𝑃wind (19) 

where is the specific mass density of the conductor 
(kg/m3), mcon is mass of the stator conductor without 
end connection and insulation (kg), d is the diameter 
of the stator conductor (m), Bmx1 and Bmz1 are the peak 
values of tangential and axial components of the 
magnetic flux density (T) respectively, and ηd is the 
coefficient of distortion. For the last, the efficiency of 
the generator is expressed in equation (20) 

η =
Pout

Pout + ∆P
=

Pout

Pout+ (∆P1+ ∆Pe+∆Prot)
 (20) 

III. Results and Discussions 

A. Magnetic field distribution 

The magnetic field distributions of the generator 
in no-load and on loaded conditions are shown in Fig. 
4. For the simulation, the load current correlated with 
the PF=1 is 5.57 A and for the PF = 0.85 is 6.32 A. 

At no-load condition (Fig. 4a), the magnetic flux is 
only produced by permanent magnets on the rotor. 

The maximum value of flux density B (in the box) 
is the highest (1.049 T) compared to the underloaded 
condition. When load RL and RL + JXL are applied, the 
magnetic flux generated by the current flowing in the 
conductors suppresses the magnetic flux produced by 
the magnets, which results in a decrease in the 
maximum B. Both simulated loads give the same 

maximum values of B, which is 1.047 T (Fig. 4b & c). 
In general, all the results in Fig. 4 exhibits good 
magnetic flux distribution on the stator and rotor 
indicated by the absence of the flux concentration 
spots. Besides, all the maximum flux densities are 
lower than the saturation point 2.2 T. 

As previously explained, the armature reaction 
takes place in the air gap. From Figure 5, it can be seen 
the inverse correlation between the air gap flux 
density Bmg and the load current. The peaks of Bmg 
waves can be observed clearly between the no-load 
and loaded condition but it appears to coincide 
between the loaded ones due to a very small 
difference in value. The peak values of each wave are 
0.80896 T, 0.7731 T and 0.76785 T for no-load, PF = 1 
and PF = 0.85 consecutively.  

B. Generator performance prediction 

The calculation results of Ia, V1, Pout, VR and η, at 
load RL and RL + JXL are presented in Table 3 and Table 
4. For easy comparison, the parameters in Table 3 and 
Table 4 are graphically illustrated as shown in Fig. 6 
to Fig 9. In a synchronous generator using a stator 
core of any size, the winding resistance is frequently 
neglected because its value is considered too small 
compared to the synchronous reactance. However, it 
is different from a coreless generator. From the 

calculation, it is obtained Xsq = 0.036 and R1 = 2.39 
, or in other words, the internal load is more 
resistive. With two types of the given loads, Ia is 
higher when the load is RL and this causes a higher 
internal voltage drop, which finally results in lower V1 

Table 3. 

Calculation results of the electrical parameters at load RL 

RL () Ia (A)  V1 (V) Pout (W) VR (%)  (%) 

400 < 0° 0.59 236.16  137.78 0.60 74.26 

360 < 0° 0.65 234.76  152.88 0.66 76.13 

320 < 0° 0.73 234.60  171.71 0.75 78.08 

280 < 0° 0.84 234.41  195.82 0.85 80.12 

240 < 0° 0.97 234.16  227.82 1.00 82.24 

200 < 0° 1.17 233.83  272.31 1.19 84.44 

160 < 0° 1.45 233.37  338.39 1.49 86.69 

120 < 0° 1.93 232.68  446.79 1.99 88.89 

80 < 0° 2.87 231.55  657.29 2.99 90.81 

40 < 0° 5.57 229.31 1241.53 5.97 91.11 
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(Fig. 6). For having better power factor, the generator 
with load RL produces better output power (Fig. 7) 
and its efficiency is also slightly higher accordingly 
(Fig. 8), with the best value of 91.11 % at 5.57 A. 
Generator with load ZL provides the highest efficiency 
of 90 % at 4.81 A and then it goes down for saturation.  

According to Eq. (16), VR represents the ratio of 
voltage drop (from no load to full load) to the no-load 
voltage. Therefore, it should be as low as possible to 
gain a stable power distribution. It is already 
mentioned that a higher voltage drop occurs when 
the load is RL (with referring to Fig. 6). Consequently, 

Table 4.  

Calculation results of the electrical parameters at load ZL 

ZL () Ia (A)  V1 (V) Pout (W) VR (%)  (%) 

400 < 31.79° 0.50 236.16  99.86 0.44 67.76 

360 < 31.79° 0.55 235.13  110.85 0.48 69.93 

320 < 31.79° 0.62 235.02  124.56 0.55 72.25 

280 < 31.79° 0.71 234.88  142.13 0.62 74.70 

240 < 31.79° 0.83 234.70  165.48 0.73 77.31 

200 < 31.79° 0.99 234.45  198.00 0.87 80.07 

160 < 31.79° 1.24 234.12  246.43 1.09 82.96 

120 < 31.79° 1.65 233.61  326.22 1.46 85.93 

80 < 31.79° 2.46 232.77  482.36 2.19 88.72 

40 < 31.79° 4.81 231.11  924.45 4.39 90.05 

30 < 31.79° 6.32 226.23  1198.47 5.86 89.38 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Magnetic field distributions under; (a) no-load condition; (b) load RL; (c) load RL + JXL 
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the VR is also higher with the maximum value of 
5.97 %, and for PF = 0.85 or load ZL, VR = 5.86 % (Fig. 9). 
These values meet the requirement, which is below 

8 %, according to IEC 60364: Low voltage electrical 
installation, part 5-52: Selection and erection of 
electrical equipment - wiring Systems.  

 

 

Figure 5. Magnetic flux density 

 

Figure 6. V1 vs Ia 

 

Figure 7. Pout vs Ia 

 

Figure 8. η vs Ia 
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IV. Conclusion 

Load characteristic analysis of the double-side 
internal coreless stator AFPMG has been discussed in 
this paper. The applied load is resistive and resistive-
inductive in series, which gives the power factor of 1 
and 0.85 respectively. From the simulation, it is found 
that when loaded with resistive load, the coreless 
generator delivers higher armature current but this 
gives a consequent in higher voltage drop indicated 
by lower terminal voltage and higher voltage 
regulation. Nevertheless, with a better power factor, 
the output power and efficiency are higher. It is 
opposite to the generator that is loaded with 
impedance. According to the results, it can be 
concluded that the coreless generator performance is 
superior in the output power (1,241 W) and efficiency 
(91 %) with resistive load; on the other hand, the 
voltage regulation is better (5.86 %) with impedance 
load. From each parameter being compared, the 
difference in values is relatively small, so in principle, 
the generator provides good performance in both 
loads. 
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Figure 9. VR vs Ia 
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