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Abstract 

Microfluidic use in various innovative research, many fields aimed at developing an application device related to handling 
fluid flows in miniature scale systems. On the other hand, on the use of micro-devices for fluid flow the existence of bends 
cannot be avoided. This research aims to make a comprehensive study of fluid flow characteristics through a microchannel 
with several possible bends. This study was conducted by comparing Reynolds number versus pressure drop in a serpentine 
microchannel to gain bends loss coefficient. The result showed that the fluid flow with Re < 100 did not affect the pressure 
drop, but on the Reynolds number above that, the pressure drop was increased along with the appears of vortices in the outer 
and inner walls around the channel bends which causes an increase in an additional pressure drop. The other finding shows 
that the reduction in diameter bend tube can increase the pressure drop. 

©2021 Research Centre for Electrical Power and Mechatronics - Indonesian Institute of Sciences. This is an open access article 
under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/). 
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I. Introduction 

In recent years, microfluidic tracts have been 
considerably used in various fields of both 
engineering and non-engineering. The utilization has 
also been done as in the heat exchanger for 
computer CPU coolers [1], fuel cell generators [2][3], 
micro-mixing reactors [4][5], etc. Regardless of its 
utilization, the microfluidic system cannot avoid the 
existence of channel bends which have either 
negative or positive effects. Therefore, it is 
considered necessary to study the characteristics of 
the fluid flow in a miter bend microchannel. Fluid 
flows in microchannels are analyzed using the 
Navier-Stokes equations [6][7] and Direct Simulation 
Monte Carlo [8][9]. This study was conducted by 
comparing Reynolds number versus pressure drop in 
a serpentine microchannel with 900 bend and 1800 
bends to obtain the bends loss coefficient. Another 
micro-scale effect observation showed that 
geometry variations of a channel in bends can cause 
significant additional pressure drop on the fluid flow 

[10][11]. This work showed that the fluid flow with a 
low Reynolds number does not affect the pressure 
drop. But at the high Reynolds number, the pressure 
drop increases with the occurrence of vortices in the 
outer and inner walls around the channel bends 
causes an increase in the additional pressure drop 
[12]. Whereas at Re above 1000 the bend loss 
coefficient Kb almost remains constant and change 
in the range of ±10 %. The other finding shows that a 
reduction in diameter bend tube can increase the 
pressure drop [13][14]. Papautsky [15] presents 
experimental findings in the domain of single-phase 
internal fluid flow at the microscale [16]. 

This review paper investigates experimental data 
currently available and assesses the current state-of-
the-art. Because the majority of microfluidic bends 
studies conducted on fluid flows in the laminar 
regime therefore pressure drop constraints, only 
laminar data are presented here. Furthermore, a 
small amount of turbulent data is available for the 
associated pressure drops. 

II. Materials and Methods 

Surface roughness and friction factors have been 
affected the characteristic of fluid flow in a channel 
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including in the microchannel. Therefore, this 
section will provide a brief understanding before 
mainly discuss about pressure drop, and fluid flow 
characteristics in the microchannel with bends.  

A. Surface roughness 

Kandlikar et al. [17] conducted an experimental 
investigation on the surface roughness effect in 
stainless steel microtube with an inner diameter of 
620 µm and 1067 µm at Reynolds number range of 
500 to 3000. They reported that the surface 
roughness greatly influences the value of heat 
transfer and pressure drop. Xing et al. [18] 
performed studies to see how surface roughness 
affects flow characteristics in 44 circular 
microchannels by 10 mm in length and a diameter of 
400 µm for Reynolds number ranges through 150 to 
2800. The essential Reynolds number for a conduit 
with an inner diameter of 400 m was calculated to 
be around 1500, and the friction factor effect was 
increased during the surface roughness escalation. 
Toghraie et al. [19] investigated the effect of surface 
roughness to pressure drop in a triangle, rectangular, 
and trapezoidal cross-section microchannel with 
number roughness of 3, 6 in the Reynolds number of 
5, 10, 15, and 20. They concluded that escalating 
roughness number would escalate the pressure drop 
in consequence stagnation effect. Jafari et al. [20] 
experimentally investigated the effect of the surface 
roughness of rectangular microchannel evaporator 
with 700 µm height, and 250 µm width using R134a 
as the working fluid. They demonstrate that, as the 
surface roughness increase from 2.03 µm –  15.86 
µm, the heat transfer coefficient was increased up to 
45 %.  

Some studies conducted a simulation, as, Guo et 
al. [21] which numerically modeled the effect of 
roughness on the fluid flow in the microchannel 
under laminar flow. They were studied with 2D and 
3D Gauss’ s model where, the 2D model fails to 
express effect roughness and 3D model is presented 
sensitively face morphology for both heat transfer 
and flow resistance. Valde’s et al. [22][23] studied 
numerical simulation and CFD simulation on the 
effect of surface roughness on the laminar fluid flow 
through the annular microchannel. Sadaghiani and 
Kosar [24] investigated numerically an effect of pin 
fin shape and surface roughness on heat transfer and 
gas flow in a rough microchannel. They reported that 
roughness elements causing Nusselt number decline 
and pressure drop increase, as well as surface 
roughness reduces pin fin shape effect. Lu et al. [25] 
studied numerically the effect of 2 % roughness in 
wall square, wave, and limped microchannel with 
Reynolds number of 500. They showed pressure 
drop and Nusselt number increase, which also 
affects the roughness depending on the 
microchannel's physical shape.  

Hydraulic diameter for rectangular cross-section 
channels determined with: 

( )
4

2h
abd

a b
=

+
 (1) 

Canal aspect ratio, is determined as: 

a
b

a =  (2) 

when referring to laminar theory as a common 
observation of differences. 

( )
( )
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theoretical

f
C

f
∗ =  (3) 

where 𝑓Re  is the non-dimensionalized that 
experimentally and theoretically calculated 
depending on the cross-section for laminar flow First 
point. 

B. Friction factor 

Judy et al. [26] performed several experiments 
with pressure-driven liquid in a round and square 
microchannel of diameter 15 -150 µm with materials 
of fused silica and stainless steel using distilled 
water, methanol, and isopropanol for working fluid 
in the Reynolds number range 8 to 2300. They 
concluded that the experimental uncertainty 
occurred when non-Stokes phenomena were within 
the diameter ranges. Wu and chang [27] 
experimented to measure friction factor laminar 
flow in trapezoidal smooth silicon microchannel 
with a hydraulic diameter of 25.9 to 291 µm using 
deionized water for working fluid. They suggested 
that Navier-Stokes equations are appropriate for 
deionized liquid flow in microchannel. Morini et al. 
[28] conducted an analytical investigation of 
rarefaction influence on pressure drop 
incompressible fluid flow in silicon rectangular, 
trapezoidal, and double-trapezoidal microchannels. 
They reported that on condition Mach number under 
0.3 the effect of gas rarefaction can be separated 
from compressibility effect and the behavior of the 
coefficient α  vs a function of the microchannel 
aspect ratio γ for the three cross -sections. Silverio 
and Moreira [29] measured the pressure drop and 
pressure distribution in circular and square 
microchannels made of borosilicate glass with 
hydraulic diameter from 50 to 500 µm in the 
Reynolds number range from 10 to 2500. Zing Li et al. 
[30] conducted a computational and experimental 
investigation on friction factor of gas flow in 
microchannel with a diameter from 146.7 –  203 µm. 
They concluded that friction factor and Reynolds 
number are not in accordance with Moody chart 
when Mach number is not more than 0.3. Hong et al. 
[31] studied experimental in friction factor turbulent 
stream gas in rectangular microchannel made silicon 
and capped glass with a hydraulic diameter of 99.36 
and 146.76 µm. They declared that the friction factor 
could be expressed with a Blasius correlation and 
Mach number [32][33].  

In the entrance section, the friction factor, 𝑓exp 
was decided using the pressure difference as 
follows: 

exp 2

2 hDPf
LVρ

D
=  (4) 

where DP is the pressure difference, L is the length 
device, and V is the mean velocity determined from 
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the mass flow rate. For laminar flow, the theoretical 
Poiseuille number, Po = 𝑓Re is constant, which is a 
function of α for rectangular cross-section channel. 

Shen et al. [34] experimental investigation of 
deionized water flow in 26 rectangular 
microchannels with a width of 300 µm and a depth 
of 800 µm, it flowed in the Reynolds number 
rangeing from 162 to 1257 and temperatures inlet of 
30, 50, and 70 °C. They declared that higher inlet 
deionized water temperature can give better 
relatively flow performance, and shown that the 
predicted friction factor value was higher when the 
Reynolds number is low. In order to define friction 
factor flow in microchannels, Celata et al. [35] 
investigated viscous heating. They expressed that 
microchannels with a diameter below 100 µm using 
pressure measurements and evaluation viscous 
heating be validated friction factor. Gunnasegaran et 
al. [36] numerically studied on laminar flow of water 
in a triangle, rectangular, and trapezoidal cross-
section microchannel in the Reynolds number range 
of 100 –  1000. They reported that the friction factor 
and Reynolds number effect appear significant on 
the rectangular channel. Park and Punch [37] 
conducted an experimental investigation on friction 
factor and heat transfer in the rectangular 
microchannel with hydraulic diameter from 106 –  
307 µm in the Reynolds number range of 69 –  800. 
They concluded that the experiment friction factor 
accord with conventional hydraulic theory, but the 
heat transfer experimental deviated with Nusselt 

number from conventional heat transfer theory. 
Ding et al. [38] conducted an experimental 
investigation on heat transfer and friction factors in 
a triangular and rectangular microchannel with the 
hydraulic diameters of 400 and 600 µm using R12 
and R134a for working fluid. It is worth noting that 
the friction factor of both fluids is the same in 
laminar flow and R12 higher in the turbulent flow. 

III. Results and Discussions 

A. Pressure drop  

Table 1 shows selected literature for single-phase 
flow in microchannel. Pfund et al. [39] measured 
friction and pressure drop in a rectangular 
microchannel with a depth range from 128 to 521 
µm in range of 60 – 3450 Reynolds numbers. They 
showed that the Reynolds number decreases with 
decreasing microchannel depth. Bahrami et al. [40] 
studied the predispose of wall coarseness 
incompressible laminar flow in a coarse circular 
microchannel. They reported that the effect of 
roughness increases the pressure drop but that 
below 3 % can be neglected. Hwang and Kim [41] 
investigated on the pressure drop in circular 
stainless steel microchannel with an inner diameter 
of 244, 430, and 792 µm when the working fluid is R-
134a and the Reynolds number is less than 1000. 
They make an impression that the first of the flow 
transition showed a little less than 2000, but on two-
phase flow increased the pressure drop with 

Table 1. 
Selected literature for single-phase flow in microchannel  

Author Year Fluid/ 
Form 

Shape Dh 
(µm) 

α ≈ a/b Re C* f. Re L/Dh Remarks 

Pfund et al.  
[39] 

2000 Water/ 
Liquid 

R 253–
990 

19.19–
78.13 

55.3–
3501 

0.01–
1.81 

0.01–
1.81 

101–
396 

The essential Reynolds number 
decreases as channel depth 
decreases. In microchannels, the 
transition is abrupt but not 
abrupt. 

Judy et al.  
[26] 

2002 Water, 
methanol, 
isopropyl 

C,R 14–
149 

1.00 7.6–
2251 

0.83–
1.27 

0.83–
1.27 

1203–
5657 

For rectangular channels, 
pedictions of friction factors are 
in good agreement with 
established theories. The 
material used to construct the 
microchannel and the test fluid 
have an impact on the friction 
factor. 

Wu and Cheng  
[27] 

2003 Water/ 
Liquid 

T 169 1.54–
26.20 

16–
1378 

0.58–
1.88 

0.58–
1.88 

192–
467 

- 

Shen et al.  
[34] 

2006 Water/ 
Liquid 

R 436 2.67 162–
1257 

1–
2.84 

 16–
754 

In rough microchannels, surface 
roughness has a substantial 
influence on laminar flow. The 
value of f Re is greater than what 
the standard theory predicts for 
high Reynolds number values, 
and it grows with increasing Re 

Steinke et al.  
[44] 

2006 Water/ 
Liquid 

R 227 0.8 14–
789 

1.15–
3.75 

 45 The channel cross-section 
measurements account for the 
majority of the uncertainty in 
f.Re. 

Hrnjak and Tu  
[43] 

2007 R134a/ 
Liquid 

R 69.5–
304.7 

0.09–
0.24 

112–
9180 

1.02–
1.09 

 315–
691 

In microchannels, surface 
roughness raises the friction 
factor and impacts the transition 
from laminar to turbulent flow 

Yuan et al.  
[18] 

2016 Water/ 
liquid 

C 400 - 150-
2800 

- - 25 The friction factor increase when 
surface roughness increased 

Jafari et al.  
[20] 

2016 R134a R 368 2.8 15.8-
36.8 

- - 52 Heat transfer experiment 
increase 45% 

C circular ; R rectangular; T trapezoid  
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decreasing inner diameter and increasing quality 
and mass flux. Bahrami et al. [40] conducted some 
experimentally and numerically analysis on pressure 
drop of laminar flow in a smooth microchannel with 
an arbitrary cross-section. They showed that 
pressure drop from modeling is relatively the same 
with a numerical analytic result at only an 8 % 
difference. Qu et al. [42] conducted computational 
and experimental studies on the water flow and 
pressure drop in the rectangular microchannel with 
222 µm of width, 694 µm of depth and 120 mm in 
the Reynolds number range from 196 –  2215. They 
show that the suitability of computational and 
experimental results also proved the conventional 
Navier-Stokes equation available to predict liquid 
flow in micro-cooling heat sinks. Hrnjak and Tu [43] 
studied an investigation on fluid and steam flow in 
the rectangular microchannel with hydraulic 
diameter from 69.5 to 304.7 µm in the Reynolds 
number range of 112 –  9180 using R 134a liquid 
and steam for working fluid. They concluded that 
both flow in laminar suitable with the analytical 
solution but on turbulent flow the friction factor 
higher than analytical solution.  

Steinke and Kandlikar [44] determine factor of 
friction using the fully established flow and 
Hagenbach factor, as: 

( ) ( ) 2

Re
2

2
2h

f VL x V
D
µ κ ρ

ρD = +  (5) 

where  is the Hagenbach factor, determined by: 

( ) ( ) 4
app FD

h

xx f f
D

κ = −  (6) 

where fFD is a fully developed friction factor, then 
total pressure drop component determines, as: 

2

2
app

i o

f LV k k
D

ρρ
 

D = + + 
 

 (7) 

The intake loss coefficient is ki, while the output loss 
coefficient is ko, then eq. (5) and (7) can be combined, 
as: 

( ) ( ) 22 2
Re

2

2
2 2 2

i o
tot

h

f VL k x Vk V k V
D

µ ρρ ρ
ρD = + + +  (8) 

Ngo et al. [45] conducted computational and 
experimental on pressure drop in the microchannel 
heat exchanger with an S-shaped fin. Fuerstman et al. 
[46] experimented on pressure drop in a long 
microchannel with a rectangular cross-section using 
water and mixtures water and glycerol for working 
fluid. They concluded that the main contributor per 
unit length to the pressure drop along of 
microchannel that loads bubbles is dependent on the 
concentration of surfactant in the liquid in which the 
bubbles move. 

B. Heat transfer  

On the channel inner surface with steady heat 
flux, the border circumstance has Nusselt number of 
fully developed laminar flows of 4.364. Zhang et al. 

[47] conduct a study on liquid flow and heat transfer 
in the rough microchannel. Klein et al. [48] analyzed 
water flow with alkyl polyglycoside surfactant APG 
in 26 triangular parallel micro canals with a 
hydraulic diameter of 108 µm to gained prime 
solvent concentration and mass flux for increasing 
heat transfer. Lee et al. [49] conducted experimental 
and numerical on deionized water in the copper 
rectangular microchannel with hydraulic diameter 
from 323 - 1068 µm in Reynolds number range of 
300 –  3500 to obtain predicted heat transfer 
applications in the microchannel. They showed that 
experimental data accord with the numerical result, 
but mismatch with the conventional channel 
correlation. Li et al. [50] studied numerical and 
experimental flow and heat transfer characteristic of 
deionized water in microchannel made from silica 
and stainless with a hydraulic diameter of 50-1570 
µm in the Reynolds number range from 20 to 2400. 
They showed that in the hydraulic diameter < 50 µm 
silica channel the water flow behavior agrees with 
macro-scale channel and increases of the Reynolds 
number affected the heat transfer. Lee and Garimella 
[51] presented a research project of saturated flow 
heat transfer and pressure drop of deionized water 
in the silicon rectangular microchannel with a 
hydraulic diameter range from 162 to 571 µm. They 
presented the effect of pressure drop and heat 
transfer as a function of applied heat flux. Dai et al. 
[52] studied experimentally water flow in tortuous 
microgroove with a semi-circular cross-section in 
the range of 50 to 900 Reynolds numbers. They 
concluded that flow in zig-zag microchannel 
configuration increased heat transfer rate of effect 
geometrical parameter. Xu et al. [1] reported they 
experimentally and numerically study on micro air 
cooler U– shape for a CPU cooler with rectangular 
pin fin which has high thermal conductivity and 
decreases air flow rate. 

C. Flow structure and pressure drop in miter bend 
microchannel  

Taassob et al. [53] numerically explored the 
impect of sharp bends and curved corners on 
rarefied gas flow in the microchannel to obtain 
thermal and hydrothermal behaviors. They reported 
that a rise in in corner radius results in a rise in mass 
flow rate. Besides that applying curvature as a 
substitute for sharp turns increase the average shear 
stress and slip velocity. Aoki et al. [4] studied 
experimentally bend geometry and confluence in the 
micromixing. They demonstrated that the mixing 
feat will be better by combining the confluence and 
bend channel also the mixing speed is increased by 
the addition of the confluence angle. Furthermore, 
the pressure drop produced is equivalent to the 
channel with or without the bend. 

Al-Neama et al. [54] conducted both 
experimentally and numerically investigation on 
four type configuration design of a rectangular 
copper microchannel heat sink to obtain the effect of 
single-phase liquid flow. Its type configuration is 
straight microchannel, single serpentine, double 
serpentine and triple serpentine microchannel. They 
reported the single route serpentine microchannel 
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design presents the most potent heat transfer but 
also the greatest pressure drop [55]. White et al. [56] 
conducted numerical studies on the gas flow with 
varying degrees of rarefaction in a microchannel 
with 90° bends. That’s studies with direct 
simulation Monte Carlo. They reported that choosing 
the right mesh size for the corner area is important 
so that the shaft and size of the recirculation zone 
are visible. 

Rovenskaya [57] conducted the same kind of 
studies however they used the Navier-Stoks 
equation for flow rate and Poiseuille number. 
Nguyen et al. [58] Experimentally investigated water 
flow in a rectangular xerographic microchannel with 
a ratio of cross-sectional area of 0.2, 0.33, and 0.5 
was tested experimentally in the ranges of 150 to 
3200 Reynolds numbers to obtain minor losses for 
90° bends. They reported that the coefficient of 
minor loses depending on Reynolds number and 
area ratio of contraction and expansion in bend. 

Arun et al. [59] numerically and experimentally 
studied flow characteristics of single-phase fluid 
following through sharp and miter segment 90o 
bends microchannel sink computational fluid 
dynamics. They reported that pressure drop of sharp 
bends higher 307 % than mitered segment bends. 
Which has been done two-dimensional gas flow 
simulation by Agrawal et al. [60]. Xiong and Chung 
[10][61] studied flow characteristics and pressure 
drop in microchannels with hydraulic diameters of 
209, 412, and 622 µm of pressure-driven are 
serpentine rectangular microchannels between 100 
and 1700 in the Reynolds number range. They 
demonstrated that during the Reynolds number 
transition at 1500-1700, on the Re <100 the vortices 
not occurred in the bends wall and on the Re > 100 
to 1000 the vortices occurred in the constant sharp 
and size. 

Torgerson et al. [62] studied experimentally fluid 
flow in a rectangular xerographic microchannel in 
the Reynolds number range of 250- 4000 with a 
channel aspect ratio of 0.45-0.074. They showed that 
in the critical Re range of 1800 to 2300, the loss 
coefficient in bend increases when Reynolds number 
<1200 and decreases significantly when Re above 
that’s. Maharudrayya et al. [2] reported a numerical 

study on laminar fluid flow in fuel cell microchannel 
with 1800 bends to investigated pressure drop 
characteristics and obtained bend loss coefficient. 
They showed that on the Reynolds number > 1000 
bend loss is the major part of the total pressure loss. 

The bend loss coefficient was shown as a function 
of Reynolds number in Figure 1. Where 
Maharudrayya et al. [2] and Xiong and Chung [10], 
using the CFD simulation method while Xiong and 
Chung [61] and Torgerson et al. [62] using the 
experimental method. The simulation findings 
reveal that they do not match the experimental data, 
whereas Xiong and Chung [61], and Torgerson et al. 
[62] experimental results demonstrate the 
agreement. This study's results may differ due to 
variances in cross-sectional form and material of 
microchannel. 

IV. Conclusion 

This research is discussing a topic of the 
characteristics of single-phase fluid flow in 
microchannels with bends. The possible conclusion 
be drawn from the available data is that the fluid 
which flow with a low Reynolds number under 100 
does not affect the pressure drop, but on the 
Reynolds number above that the pressure drop has 
been increased as the appears of vortices in the outer 
and inner walls around the channel bends causes an 
increase in the additional pressure drop. Whereas at 
Reynolds number above 1000 the bend loss 
coefficient (Kb) almost remains constant and has 
fluctuated in the range of ±10 %. The other finding 
shows that the reduction in diameter bend tube can 
increase the pressure drop. At further research, it is 
recommended to studies the properties of liquid 
flow on the microchannel which is influenced by the 
presence of the variety of bends angles and a wider 
range of Reynolds numbers, especially to obtain 
minor loss effect accurately. 
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