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Abstract 

This article aims to design a model for forecasting the number of vehicles arriving at the battery swap station (BSS). In our 
case, we study the relevance of the proposed approach given the rapid increase in electric vehicle users in Indonesia. Due to 
the vehicle electrification program from the government of Indonesia and the lack of supporting infrastructure, forecasting 
battery swap demands is very important for charging schedules. Forecasting the number of vehicles is done using machine 
learning with the long short-term memory (LSTM) method. The method is used to predict sequential data because of its ability 
to review previous data in addition to the current input. The result of the forecasting using the LSTM method yields a 
prediction score using the root-mean-square error (RMSE) of 2.3079 × 10−6. The forecasted data can be combined with the 
battery charging model to acquire predicted hourly battery availability that can be processed further for optimization and 
scheduling. 

Copyright ©2023 National Research and Innovation Agency. This is an open access article under the CC BY-NC-SA license 
(https://creativecommons.org/licenses/by-nc-sa/4.0/). 
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I. Introduction 

Machines that require combustion as the primary 
energy generator, such as those in factories and 
motor vehicles, produce hazardous gases. These 
gases play an active role in the increase in Earth's 
temperature. This increase in temperature is caused 
by the effect of gases that can reflect the sun’s heat 
that is supposed to come out of the Earth’s 
atmosphere back to the Earth’s surface. Rising global 
temperatures can lead to natural disasters. Therefore, 
the United Nations (UN) signed the agreement to 

reduce these hazardous gas emissions called the 
Paris Agreement on 12 December 2015  [1]. This 
agreement aims to address climate change by 
reducing greenhouse gas emissions that can reflect 
solar heat. To support this cooperation, greenhouse 
gas sources such as motor vehicles must be reduced. 
However, motor vehicles are widely used in 
everyday life and are difficult to reduce. Therefore, it 
is necessary to replace motor vehicles that have 
lower or no emissions. 

Indonesia has implemented regulations to reduce 
emissions from motor vehicles by instituting CO2 
reduction in the transportation sector, i.e., the use of 
electric vehicles. With the release of Presidential 
Regulation 55/2019 on battery-powered electric 
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vehicles, the popularity of electric vehicles began to 
increase once more. In addition, the local 
government has enacted a number of subsidiary 
policies to expedite the creation of electric vehicles. 
As a consequence of this regulation, there is a surge 
in the number of electric vehicles, particularly 
electric motorcycles. Some motorcycles brands have 
been manufactured in the country, resulting in a 
rapid increase in the number of electric vehicles by 
2020  [2]. 

These electric vehicles require an energy source, 
but their small shape makes electric vehicles only 
use batteries as their energy source. The use of this 
battery will cause problems with charging the 
battery itself. The battery requires high power. This 
will increase considering the increasing 
consumption of electric vehicles. This power use 
should be scheduled so that the user does not wait 
long and there is no surge in power use. Scheduling 
from battery charging can be charging at a time that 
not many users use  [3] [4] [5], combined with 
renewable energy  [6] [7] [8], or trying to increase 
profits  [9] [10]. The scheduling method mentioned 
above requires an accurate prediction of battery 
availability to be implemented correctly. To achieve 
acceptable accuracy, battery availability can be 
predicted using battery demand and battery 
charging methods. This study aims to develop an 
accurate prediction of battery availability by using 
forecasted battery demand and battery charge time 
using commonly used charging methods. 

II. Materials and Methods 

Battery availability for a battery swap station 
(BSS), as mentioned in the introduction, can be 
predicted using vehicle arrivals and battery charging 
times. Battery charging can be achieved by using the 
appropriate battery charging model. There are many 
charging models that can be used by electric vehicle 
batteries. But as mentioned later, only one model is 
commonly used by electric vehicle batteries due to 
ease of implementation. 

Battery demand data for battery availability can 
be acquired by using forecasting. Data from the past 
can be processed using a neural network (NN), and 
the number of vehicles that use the BSS for a given 
time frame can be acquired. Data acquired from a 
NN can be used to represent battery demands, 
assuming that one vehicle only swaps for a single 
battery. 

In the following subsections, we will elaborate 
more about the battery charging model, forecasting 
model, and parameter used for simulation. 

A. Battery charging model 

Lithium batteries are widely used for electric 
vehicles due to their high energy density and open-
circuit voltage. Because of its high energy density, 
this type of battery is prone to exploding at high 
temperatures. To anticipate such incidents, 
especially when charging, lithium batteries require a 
specialized charging method. There are many 

charging methods that can be used to charge lithium 
batteries, with varying efficiency and complexity. 

The charging method constant current (CC), 
constant voltage (CV), and constant power (CP) are 
the least complex charging methods but also the 
least efficient, with the highest possibility of 
damaging the battery during charging  [11]. Another 
method is electrochemical model-based charging, 
which produces the highest efficiency but also has a 
high complexity, making implementation of this 
method difficult  [12]. The last method to consider is 
constant current-constant voltage (CCCV), which has 
average efficiency and average complexity compared 
to other charging methods. But with its low 
complexity, the CCCV method has become the most 
commonly used due to its ease of implementation 
while still maintaining an acceptable level of 
efficiency. 

The CCCV method begins with a CC until a 
predetermined voltage is reached. Once the voltage 
reaches this threshold, the charging voltage becomes 
constant while the charging current decreases 
exponentially  [9] [13]. Increased internal resistance 
causes a decrease in current during CV operation. 
This resistance will increase as the battery's 
temperature and state of charge (SoC) increase 
during charging  [14]. When charging in the CC stage, 
only the charging voltage is affected by the battery's 
internal resistance. After the charging change stage, 
the current will decrease exponentially as the 
internal resistance increases. The charging current 
for CC-CV methods for both stages is depicted in 
Figure 1. 

This battery charging method will be required in 
the formation of the schedule for the battery swap 
station (BSS). With the correct charging model, the 
scheduling of the BSS will be more efficient. It also 
requires calculating the SoC of the battery shown in 
equation (1). 

𝐾 = 𝐾0 + ∫ 𝐼𝑏
𝐶𝑏
𝑑𝑑 (1) 

The SoC of the battery (𝐾) will depend on the SoC 
before charging (𝐾0 ), charging current ( 𝐼𝑏 ), and 
battery capacity that can be used. (𝐶𝑏). It can be seen 
from the equation that the SoC of a battery will 
depend on the health of the battery itself. In addition, 
the charging current will determine sooner or later 
when the battery is charged  [15]. 

B. Forecasting model 

Sequential data can be predicted using artificial 
intelligence. This intelligence can be created with 
various machine learning methods, such as artificial 
neural networks (ANNs). ANN is a machine learning 
method inspired by early models of sensory 
processing in the brain. This can be simulated using 
a network of neuron models on a computer. The 
network can break a feature from the input so that 
the computer can identify the input from the feature 
it has learned. Because this machine can learn, ANN 
is widely used in classification problems  [16]. These 
ANNs will develop into recurrent neural networks 
(RNNs) to process sequential data. 



M.Z. Romdlony et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 14 (2023) 72-79 

 

74 

RNNs have an architecture where there is a layer 
(hidden layer or output layer) that becomes the 
input of the input layer. The architecture allows this 
method to detect relationships sequentially. This 
method developed rapidly with the emergence of 
long short-term memory (LSTM) and gated recurrent 
unit (GRU), which made it possible to remember 
distant past circumstances  [17]. The ability to make 
predictions with past data makes scheduling 
methods like the day-ahead method possible  [6]. 

GRU is a type of RNN that aims to resolve 
problems in the long term by using reset and update 
gates. Both gates are used to measure the correlation 
between the previous state and the next forecasting 
step. GRU can be trained using a smaller dataset than 
LSTM. By using a smaller dataset, GRU can be trained 
faster due to the two gates of GRU  [18] [19]. 

LSTM is a development of RNN that can 
remember information for a longer period of time 
than RNN. This is due to the addition of memory 
blocks to an RNN cell, where RNN cells themselves 
are a group of RNN networks. This additional 

memory block makes LSTM more accurate than GRU 
with a larger dataset and a longer training time. As 
accuracy is valued more than time, forecasting using 
LSTM was considered the main model for this article. 
The additional memory blocks are arranged in three-
gates: Input Gate (𝑖(𝑡)), Output gate (𝑜(𝑡)), and Forget 

Gate (𝑓(𝑡) )  [20] [21] [22]. This arrangement for the 
LSTM cell can be seen in Figure 2. 

Based on Figure 2, LSTM cells can be represented 
in mathematical equations as equation (2) to 
equation (7). 

𝑓(𝑡) = 𝜎�𝑊𝑓𝑓𝑥(𝑡) + 𝑊𝑓ℎℎ(𝑡−1) + 𝑏𝑓� (2) 

𝑖(𝑡) = 𝜎�𝑊𝑖𝑓𝑥(𝑡) + 𝑊𝑖ℎℎ(𝑡−1) + 𝑏𝑖� (3) 

𝑜(𝑡) = 𝜎�𝑊𝑜𝑓𝑥(𝑡) + 𝑊𝑜ℎℎ(𝑡−1) + 𝑏𝑜� (4) 

𝑝�(𝑡) = tanh�𝑊𝑝𝑓𝑥(𝑡) + 𝑊𝑝ℎℎ(𝑡−1) + 𝑏𝑝� (5) 

𝑝(𝑡) = 𝑓(𝑡) ∙ 𝑝(𝑡−1) + 𝑖(𝑡) ∙ 𝑝�(𝑡) (6) 

ℎ(𝑡) = 𝑜(𝑡) ∙ tanh�𝑝(𝑡)� (7) 

where 𝑝(𝑡) shows the previous cell memory and ℎ(𝑡) 

 
Figure 2. LSTM cell structure  

 
Figure 1. Battery charging current with CC-CV charging method 
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is the output of the cell. 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜, and 𝑏𝑝 are bias of 
each gate and predicted memory. 𝑊𝑓𝑓 , 𝑊𝑖𝑓, 𝑊𝑜𝑓, and 
𝑊𝑝𝑓 are the weights for input, while 𝑊𝑓ℎ , 𝑊𝑖ℎ, 𝑊𝑜ℎ , 
and 𝑊𝑝ℎ themselves are those for cell output that all 
have their own values depending on the gate and 
predicted memory. The values of the weight and bias 
will be replaced by the machine so that the 
predictive value is close to the training data value. 
Sigmoid (𝜎 ) and hyperbolic (tanh) functions are 
defined as equation (8) and equation (9). 

𝜎(𝑥) = 1
1+𝑒−𝑥

 (8) 

tanh(𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (9) 

C. Simulation parameter 

Both models required a predefined parameter to 
achieve an accurate prediction of battery availability. 
For prediction simulation, battery heterogeneity was 
not considered, as BSS for this simulation can only 
serve one type of battery. A battery that is 
commonly used for two-wheel electric vehicles in 
Indonesia was considered for this simulation. For 
lithium-ion (Li-ion) batteries, the battery parameter 
is shown in Table 1 alongside the BSS parameter and 
the available commercial charger for charge current. 

The battery specified in Table 1 during extensive 
use can be used for around two hours. Considering 
extensive use and BSS peak hours, a dataset was 
generated with tendencies for single days, as shown 
in Figure 3. Peak hour was considered to happen 
between 15 o’clock and 19 o’clock, when students 
and workers were going home. Other possible peaks, 

like before leaving home and around lunch, were 
also considered for the dataset. 

The dataset used for this simulation is randomly 
generated. Both models required a predefined 
parameter to achieve an accurate prediction of 
battery availability. For prediction simulation, 
battery heterogeneity was not considered, as BSS for 
this simulation can only serve one type of battery. A 
battery that is commonly used for two-wheel 
electric vehicles in Indonesia was considered for this 
simulation. For Li-ion batteries, the battery 
parameter is shown in Table 1 alongside the BSS 
parameter. 

III. Results and Discussions 

The battery charging model and the forecasting 
model described earlier were tested using the 
parameters mentioned above. The battery charging 
model was tested using the parameters shown in 
Table 1. The effects of charge current and SoC 
threshold were also tested to find their connection 
to battery charging time. The forecasting model was 
trained using the generated dataset mentioned 
above and scored using the root-mean-square error 
(RMSE) to quantify forecasting model quality. After 
testing, these two models were combined to create a 
prediction for battery availability. 

A. Battery charging 

The effect of the current on battery charging can 
be tested with equation (1). With the same initial 
health and SoC, battery charging with a current of 
0.25 C and 0.1 C was tested, with C being the 

Table 1. 
Simulation parameter 

Parameter Value 

Battery voltage 75 V 

Charge current 5 A and 2 A 

Battery capacity 20 Ah 

Battery charging slot 12 

Maximum available battery 9 
 

 
Figure 3. Hourly vehicle amounts for one day 
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battery's maximum capacity. The results of this test 
are shown in Figure 4. 

The charging results show the effect of current on 
battery charging time. It appears that charging using 
0.25 C reaches 80 % SoC in three hours, while 
charging with 0.1 C achieves the same in seven 
hours. This shows the advantages of high-current 
charging, but high-current charging will cause heat 
and reduce the health of the battery. 

The test uses a battery charger with the same 
CCCV voltage limit. Because the voltage limit is a 
constant that has been set on the previous battery 
charger, these numbers can be modified and tested 
for their effects. For this test, the limits of 80 %, 
70 %, and 60 % SoC were tested with a charging 
current of 0.1 C. The result of this test is shown in 
Figure 5. 

Figure 5 shows charging differences with 
previously specified voltage limits, indicating 
changes in battery charging time. The difference 
between 80 % and 70 % shows that it takes 6 

minutes to reach the 80 % SoC. The difference 
between the limit of 70 % and 60 % indicates one 
hour to reach an 80 % SoC. These tests showed that 
increased voltage limits would result in the battery 
reaching a SoC of 80 % faster without considering 
battery health. 

B. Vehicle forecasting 

LSTM has the ability to predict sequential data 
from previous time series. In this paper, we use 
randomly generated historical data on vehicle 
arrivals at BSSs. In addition to its architecture that 
takes input from other layers, LSTM is a predictive 
method that is suitable for predicting the number of 
vehicles coming every hour. It is known that the 
vehicle is coming, so that the battery replacement 
station can prepare the batteries to be removed. 
Figure 6 shows the prediction results of vehicle 
amounts using LSTM for ten days or 240 hours to 
show the effect of previous days. 

 
Figure 4. Comparison of different charge current effects for battery SoC with the CCCV charging method 

 
Figure 5. Comparison of different voltage cutoff effects for battery SoC with the CCCV charging method 
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The result of the prediction using LSTM results in 
a RMSE score of 2.3079 x 10-6. The score is small 
enough for RMSE to be used for scheduling battery 
replacement stations. 

C. Battery availability 

Battery charging models and vehicle forecasting 
were combined to predict hourly battery availability. 
The prediction was made using hourly vehicle 
amounts, as shown in Figure 3, and parameters, as 
shown in Table 1, with the SoC threshold at 80 %. 
For this simulation, the battery is considered 
swappable when the SoC reaches 80 % with a 
uniform depth of discharge (DoD) of 100 % for every 
battery swap. The result of battery availability 
prediction is shown in Figure 7. Charge currents 
during CC are 2 A and 5 A. 

BSS was having difficulty meeting battery swap 
demand at peak hours. Battery availability was a 
constant zero from hours 15 to 20 for 5 A charging 
current and from hours 14 to 21 for 2 A. The unmet 
battery swap demand during zero battery 
availability for 5 A and 2 A charging currents is 
shown in Figure 8. 

Figure 8 shows BSS's difficulty meeting battery 
demand during peak hours. This unmet demand 
comes from high demand that can be seen in hours 
16 to 17, where demand reaches nine batteries, or 
equal to the maximum battery available. Another 
factor is the slow charge time that can be seen in BSS 
with a 2 A charge current, which is unable to restore 
its battery availability to the maximum at the end of 
the day. 

 
Figure 6. Comparison of real and predicted hourly vehicle amounts 

 
Figure 7. Comparison of BSS battery availability for charge current 5 A and 2 A 
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IV. Conclusion 

This study aims to develop an accurate prediction 
of battery availability by using forecasted battery 
demand and battery charge time using commonly 
used charging methods. Simulation shows that the 
combination of battery charging methods using 
CCCV and forecasting using the LSTM model can be 
used to predict battery availability. The simulation 
also shows BSS’s difficulty meeting battery demand 
during peak hours. That is because battery swap 
demands are equal to or greater than the maximum 
battery availability. Another reason is that it takes 
three hours to seven hours for the battery to charge 
to SoC 80%, depending on the charge current. Future 
research efforts will focus on optimizing adaptive 
charging, which can change its charging current to 
either meet battery demand or conserve battery 
health. 
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