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Abstract 

The growing reliance on renewable energy sources (RES), alongside the surge in electricity consumption, has intensified the 
challenges associated with congestion management in power transmission lines. This article investigates the use of an advanced 
interline power flow controller (AIPFC) combined with artificial intelligence (AI) and machine learning (ML) methods to tackle 
congestion management challenges. The aim is to establish a dependable and effective power system, all while reducing the costs 
associated with congestion management. Algorithms in AI and ML are utilized to create models aimed at predicting and 
managing congestion, whereas optimization techniques are applied to identify the most effective operation of AIPFC and 
strategies for alleviating congestion. The IEEE 30-bus system is utilized as a test case to assess the proposed methodology. A 
comparative analysis is performed, evaluating the effectiveness of the AI/ML-based approach in relation to traditional 
congestion management techniques. The findings demonstrate that the incorporation of AIPFC alongside AI/ML 
methodologies markedly alleviates congestion within the power transmission lines of the IEEE 30-bus system. The proposed 
combination of model predictive control (MPC) and AIPFC (MPC-AIPFC), integrated with constriction factor particle swarm 
optimization (CFPSO), achieves the lowest fuel cost of $798.81/h, the minimum total power loss of 0.0855 pu, and demonstrates 
congestion mitigation under overload conditions. These results underscore the approach’s significant advancements in reducing 
cost, optimizing power flow, and relieving congestion compared to traditional methods. 

Keywords: advanced interline power flow controller (AIPFC); artificial intelligence (AI); congestion management; 
IEEE 30-bus system; machine learning (ML). 

 
 

I. Introduction 

The evolution of contemporary power systems has 
played a crucial role in facilitating the development of 
industrial and technological societies by providing a 

dependable supply of electrical energy. The increasing 
demand for electricity has made power systems a 
crucial element of contemporary infrastructure, 
requiring ongoing improvements in their design and 
operation to effectively address societal needs. Among 
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these advancements, power transmission lines play a 
vital role in guaranteeing the efficient and reliable 
distribution of electricity to consumers. The 
development and maintenance of transmission 
networks are crucial for numerous nations aiming to 
satisfy rising electricity demands while ensuring the 
stability of power systems. As power grids evolve, 
tackling transmission congestion has emerged as a 
significant challenge, necessitating creative solutions to 
improve grid performance and reliability [1]. The 
power transmission system plays a crucial role in 
ensuring the efficient and reliable delivery of electricity 
from generation sources to end consumers. 
Nonetheless, the rising demand for electricity, shifts in 
power generation patterns, and the constrained growth 
of transmission infrastructure have resulted in 
congestion challenges within power transmission lines. 
Congestion arises when the electricity demand 
surpasses the transmission lines' capacity, leading to 
bottlenecks, voltage instability, and the risk of 
equipment overload [2]. 

Congestion management plays a vital role in the 
operation of power systems, ensuring the reliable and 
efficient transmission of electricity. A range of 
techniques and strategies has been devised and utilized 
to alleviate congestion in power transmission lines, 
such as load shedding, demand response programs, 
network reconfiguration, and the incorporation of 
flexible AC transmission system (FACTS) devices. 
Furthermore, sophisticated optimization techniques 
and artificial intelligence (AI)-driven methods have 
been investigated to improve the efficiency of 
congestion management, reduce operational expenses, 
and maintain grid stability. Techniques for managing 
congestion are frequently utilized together to tackle 
particular congestion situations and attain the best 
outcomes. The choice of methods is influenced by 
various elements, including the attributes of the system, 
the structure of the market, regulatory conditions, and 
the particular difficulties presented by congestion 
within a specific power system [3]. One method to 
tackle congestion involves the expansion of 
transmission infrastructure through the construction 
of new transmission lines. This enhances the 
transmission capacity and mitigates congestion in 
heavily utilized corridors. An alternative approach 
focuses on enhancing current transmission lines by 
boosting their capacity through the implementation of 
higher-rated conductors, utilizing advanced materials, 
or improving the infrastructure with innovative 
technologies, such as dynamic line rating systems. This 
strategy effectively addresses the increasing electricity 
demand while ensuring the power grid's reliability and 
efficiency are upheld. In the realm of power 

transmission, conducting generally pertains to the 
process of substituting or enhancing the current 
conductors on transmission lines to elevate their 
capacity, performance, or efficiency. Nonetheless, it can 
also generally denote any procedure focused on 
enhancing or reinstating the operational efficiency of 
transmission lines, including the improvement of 
conductor material, diameter, or even modifying the 
line's configuration to optimize power flow and 
minimize losses [4]. System operators have the 
capability to modify the output levels of power 
generators in order to redistribute power flows and 
mitigate congestion. Shifting the generation to less 
congested areas can effectively alleviate the load on 
heavily loaded lines [5]. Promoting adjustments in 
consumer electricity usage during peak times can 
effectively lower overall demand and ease congestion. 
Programs that encourage demand response and time-
of-use pricing can motivate consumers to adjust their 
electricity usage to off-peak times. The optimal power 
flow (OPF) approach takes into account network 
constraints and economic factors to establish the most 
efficient generation dispatch and device control, aiming 
to reduce system costs while adhering to operational 
limits [6]. Incorporating congestion constraints allows 
for the alleviation of congestion and the optimization 
of power flow patterns through OPF. Security-
constrained OPF incorporates system security 
constraints, including voltage limits and contingency 
analysis, while also addressing congestion management 
objectives. This guarantees that the power flow 
solutions remain stable across various possible system 
contingencies [7]. FACTS devices, including static 
VAR compensators (SVCs), static synchronous 
compensators (STATCOMs), and interline power flow 
controllers (IPFCs), facilitate dynamic regulation of 
voltage and reactive power flow. These devices are 
capable of actively managing power flows, regulating 
voltages, and improving grid stability to reduce 
congestion and optimize power flow patterns [8]. The 
exploration of AI and machine learning (ML) 
applications in power systems is a swiftly advancing 
domain. Current investigations are centered on 
creating more sophisticated algorithms, integrating 
real-time data, enhancing computational efficiency, 
and tackling cybersecurity issues. The incorporation of 
AI and ML methodologies presents significant 
opportunities to revolutionize power systems, 
facilitating more intelligent, efficient, and sustainable 
operations and management. It is crucial to recognize 
that model predictive control (MPC) is not intrinsically 
linked to AI, yet it can be effectively integrated with 
AI/ML techniques to improve system performance [9]. 
MPC employs mathematical models and optimization 
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algorithms to ascertain control actions through the 
prediction of future system behavior. In contrast to 
AI/ML methods that generally derive patterns from 
data, MPC utilizes a predetermined model to predict 
outcomes and enhance control strategies. Through the 
anticipation of future system states, MPC is able to 
modify control variables like generation dispatch and 
device configurations to mitigate congestion and 
uphold system stability. The integration of AI and ML 
with MPC allows for real-time data processing and 
adaptive learning, significantly improving its capacity 
to address the dynamic and intricate conditions of 
power systems. This collaboration can result in 
enhanced predictions, superior decision-making, and 
an overall boost in system performance [10]. 

The congestion of power transmission lines 
presents a notable challenge in contemporary power 
systems, resulting in inefficiencies, heightened 
operational costs, and possible stability issues. The 
combination of ML techniques with advanced interline 
power flow controller (AIPFC) has proven to be a 
powerful method for optimizing power flow, 
improving grid reliability, and reducing congestion 
challenges. In this domain, numerous sophisticated 
methods and terminologies have been previously 
presented, showcasing cutting-edge strategies for 
managing congestion [11]. A prominent technique 
utilized in this context is reinforcement learning (RL), 
enabling the system to derive optimal power dispatch 
strategies informed by historical data and real-time grid 
conditions. Approaches that leverage RL employ 
reward-based mechanisms to dynamically modify the 
control parameters of the AIPFC, thereby ensuring an 
optimal distribution of power flow across various 
transmission lines. Furthermore, deep Q-networks 
(DQNs) and proximal policy optimization (PPO) have 
been investigated to enhance decision-making abilities 
in congestion management situations [12]. 

A key element includes predictive congestion 
modeling, utilizing supervised learning algorithms like 
support vector machines (SVMs), random forests (RF), 
and artificial neural networks (ANNs) to forecast 
congestion patterns. The models examine historical 
grid data, such as line loadings, voltage fluctuations, 
and variations in demand and supply, to predict 
possible congestion events. Utilizing feature selection 
methods like principal component analysis (PCA) and 
recursive feature elimination (RFE), these models 
improve prediction accuracy and decrease 
computational complexity [13]. To enhance congestion 
control, hybrid optimization techniques that integrate 
particle swarm optimization (PSO) and genetic 
algorithm (GA) have been proposed. These hybrid 
models enhance the placement and operation of 

AIPFCs by effectively balancing exploration and 
exploitation within the solution space. The adaptive 
swarm hybrid optimizer (ASHO) represents a 
technique that dynamically modifies the inertia weight 
and learning coefficients, facilitating quicker 
convergence in strategies aimed at mitigating 
congestion [14]. Furthermore, explainable AI (XAI) 
models have been incorporated into congestion 
management frameworks to improve interpretability 
and transparency. Employing SHapley Additive 
exPlanations (SHAP) and local interpretable model-
agnostic explanations (LIME) enables grid operators to 
gain insights into the critical elements affecting 
congestion predictions, facilitating informed decision-
making for control actions [15]. 

Furthermore, the idea of federated learning (FL) has 
been investigated to facilitate cooperative congestion 
management among various substations while 
maintaining data privacy. FL facilitates the training of 
decentralized ML models on local datasets, enabling 
central aggregation while safeguarding sensitive grid 
information. This guarantees a secure and scalable 
application of ML-driven congestion management 
strategies in extensive power systems. The 
incorporation of graph neural networks (GNNs) has 
garnered interest for their ability to model the intricate 
topologies of power grids. GNNs utilize node 
embeddings and adjacency matrices to effectively 
capture spatial correlations among transmission lines, 
leading to enhanced accuracy in congestion prediction 
and optimization of power flow. 

The IPFC technology presents considerable 
advantages in the realm of power transmission systems. 
The features related to power flow control, voltage 
stability enhancement, grid stability improvement, 
congestion management, flexibility, and scalability 
render it an essential instrument for optimizing power 
system operation and guaranteeing a reliable and 
efficient electricity supply [16]. The integration of 
AI/ML techniques within the IPFC significantly boosts 
its performance, adaptability, and efficiency in 
addressing congestion and ensuring grid stability. 
Through the application of advanced strategies and 
technologies, including the integration of the IPFC with 
AI/ML, it is possible to alleviate congestion challenges, 
resulting in a more optimized and resilient power grid 
[17]. 

The AIPFC is gaining traction for its effectiveness 
in managing congestion in power transmission lines, 
thanks to its capability to regulate power flow across 
several transmission lines at once. In contrast to 
conventional devices that regulate power flow along a 
single line, AIPFC provides enhanced flexibility and 
efficiency through the management of interline power 
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flow. This capability facilitates improved congestion 
management and contributes to greater grid stability. 
The AIPFC's distinctive design facilitates the balancing 
of power flow, mitigates congestion, and guarantees 
optimal performance of transmission lines, particularly 
in networks with multiple heavily loaded lines. This is 
especially advantageous in contemporary power 
systems, where the incorporation of renewable energy 
sources (RES) and variable demand patterns can result 
in congestion, inefficiency, and instability within the 
system. Utilizing AIPFC allows utilities to improve grid 
reliability, minimize transmission losses, and optimize 
power distribution. 

II. Materials and Methods 

A. Interline power flow controller 

This study presents a completely innovative 
advanced model of IPFC for power flow analysis. This 
model incorporates the impedance of the series 
converter transformer along with the line charging 
susceptance. The findings indicate that, even with the 
inclusion of these elements, the fundamental structure 
and symmetry of the admittance matrix remain intact. 
The Jacobian matrix maintains its block-diagonal 
structure, enabling the ongoing application of sparsity 
techniques that greatly improve computational 
efficiency. The IPFC serves as a versatile and adaptive 
apparatus in power transmission systems, aimed at 
regulating power flow and improving grid stability. The 
IPFC is composed of multiple transmission lines that 
are interconnected through voltage source converters 
(VSCs) located at both ends. The VSCs are generally 
founded on insulated-gate bipolar transistor (IGBT) 
technology, allowing for independent control of the 
injected voltage. The VSCs of the IPFC are arranged in 
series with the transmission lines, facilitating accurate 
management of both active and reactive power flow. 
The series connection guarantees that the injected 
voltage corresponds to the line current, facilitating 
efficient power flow management [18]. 

The AIPFC works by introducing a regulated 
voltage into the transmission lines. The magnitude and 
phase angle of the injected voltage can be modified to 
regulate the flow of active and reactive power. By 
adjusting the phase angle of the injected voltage, the 
AIPFC is capable of altering the distribution of power 
flow among the transmission lines. The system has the 
capability to reroute power from overloaded lines to 
those with lighter traffic, thereby reducing congestion 
and enhancing the efficiency of power distribution. The 
AIPFC has the capability to manage reactive power 
flow through the injection or absorption of reactive 

power within the transmission lines. This facilitates 
voltage regulation and improves voltage stability within 
the system. The AIPFC control strategy encompasses 
the observation of line currents, voltages, and system 
conditions. Utilizing this information, control 
algorithms are implemented to determine the necessary 
injected voltage and modify the converter settings as 
needed. The AIPFC facilitates efficient congestion 
management through the dynamic redistribution of 
power flows, alleviating bottlenecks, and optimizing the 
use of transmission capacity [19]. The AIPFC provides 
dynamic power flow control, multi-line management, 
rapid response, and high precision, establishing it as a 
valuable instrument for congestion management in 
power transmission systems. The capacity to reduce 
congestion, balance loads, regulate voltage, and 
improve grid stability offers significant benefits for 
enhancing system reliability, optimizing power flow, 
and facilitating the integration of RES. The IPFC's 
adaptability, modular design, and alignment with 
AI/ML methodologies significantly improve its ability 
to manage congestion. 

B. Modeling and control strategies for AIPFC 

The implementation of modeling and control 
strategies is essential for the efficient functioning of the 
AIPFC. Precise modeling of the IPFC system and the 
application of suitable control strategies are crucial for 
attaining OPF control and effective congestion 
management [20]. The AIPFC model must accurately 
represent the relationships between voltage and current 
for the IPFC and the transmission lines, incorporating 
control variables like injected voltage magnitude and 
phase angle. The modeling must take into account the 
system dynamics, particularly the response time of the 
converters and the related control loops [19]. The 
mathematical derivation is applicable to an AIPFC 
featuring any quantity of series converters. The 
equivalent circuit of an AIPFC featuring two series 
converters is illustrated in Figure 1. 

From Figure 1, we can express as equation (1) and 
equation (2). 

𝑉𝑉𝑖𝑖𝑛𝑛 = 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛 + 𝐼𝐼𝑖𝑖𝑛𝑛𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛 + 𝑉𝑉𝑡𝑡𝑛𝑛  (1) 

𝐼𝐼𝑖𝑖𝑛𝑛 = 𝐼𝐼1 + 𝐼𝐼10 =
�𝑉𝑉𝑡𝑡𝑛𝑛−𝑉𝑉𝑗𝑗𝑛𝑛�

𝑍𝑍𝑙𝑙𝑛𝑛
+ 𝑉𝑉𝑡𝑡𝑛𝑛 �𝑗𝑗

𝐵𝐵10
2
� (2) 

We can express 𝑉𝑉𝑡𝑡𝑛𝑛  and 𝐼𝐼𝑖𝑖𝑛𝑛  according to 𝑉𝑉𝑗𝑗𝑛𝑛  and 𝐼𝐼𝑗𝑗𝑛𝑛  as 
equation (3) 

𝑉𝑉𝑡𝑡𝑛𝑛 = 𝐼𝐼1𝑍𝑍𝑙𝑙𝑛𝑛 + 𝑉𝑉𝑗𝑗𝑛𝑛  (3) 

where 𝑉𝑉𝑖𝑖𝑛𝑛 = �𝑉𝑉𝑖𝑖𝑛𝑛�∠𝜃𝜃𝑖𝑖𝑛𝑛  and 𝑉𝑉𝑗𝑗𝑛𝑛 = �𝑉𝑉𝑗𝑗𝑛𝑛�∠𝜃𝜃𝑗𝑗𝑛𝑛  are the 
complex bus voltages at buses 𝑖𝑖𝑛𝑛 and 𝑗𝑗𝑛𝑛, 𝐼𝐼𝑖𝑖𝑛𝑛  and 𝐼𝐼𝑗𝑗𝑛𝑛  are 
the complex injection currents at buses 𝑖𝑖𝑛𝑛  and 𝑗𝑗𝑛𝑛 , 
𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛 = �𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛�∠𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛  is the complex controllable series 



B.N. Bhukya et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 16 (2025) 52-68 

 

56 

injected voltage, 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛 = 𝑅𝑅𝑠𝑠𝑠𝑠𝑛𝑛 + 𝑗𝑗𝑋𝑋𝑠𝑠𝑠𝑠𝑛𝑛  is the series 
transformer impedance, 𝑍𝑍𝑙𝑙𝑛𝑛 = 𝑅𝑅𝑙𝑙𝑛𝑛 + 𝑗𝑗𝑋𝑋𝑙𝑙𝑛𝑛  is the line 
series impedance, and 𝐵𝐵10  is the line charging 
susceptance. 

By applying Kirchhoff’s current law (KCL) at node 
‘a’ using equation (4) and equation (5). 

𝐼𝐼1 = −𝐼𝐼𝑗𝑗𝑛𝑛 + 𝐼𝐼𝑎𝑎𝑎𝑎 (4) 

𝐼𝐼𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑎𝑎𝑎𝑎
𝑍𝑍𝑎𝑎𝑎𝑎

=
𝑉𝑉𝑗𝑗𝑛𝑛

� 2
𝑗𝑗𝐵𝐵10

�
= 𝑉𝑉𝑗𝑗𝑛𝑛 �𝑗𝑗

𝐵𝐵10
2
� (5) 

Enter equation (5) instead of equation (4): 

𝐼𝐼1 = −𝐼𝐼𝑗𝑗𝑛𝑛 + 𝑉𝑉𝑗𝑗𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
� (6) 

Put equation (3) into the context of equation (6): 

𝑉𝑉𝑡𝑡𝑛𝑛 = 𝑉𝑉𝑗𝑗𝑛𝑛 �1 + 𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
�� − 𝐼𝐼𝑗𝑗𝑛𝑛𝑍𝑍𝑙𝑙𝑛𝑛 (7) 

The equation (2) is known, we are adept at composing 
𝐼𝐼10 in equation (8), 

𝐼𝐼10 = 𝐼𝐼𝑐𝑐𝑐𝑐 = 𝑉𝑉𝑐𝑐𝑐𝑐
𝑍𝑍𝑐𝑐𝑐𝑐

= 𝑉𝑉𝑡𝑡𝑛𝑛
� 2
𝑗𝑗𝐵𝐵10

�
= 𝑉𝑉𝑡𝑡𝑛𝑛 �𝑗𝑗

𝐵𝐵10
2
� (8) 

Replace equation (7) within equation (8): 

𝐼𝐼10 = �𝑉𝑉𝑗𝑗𝑛𝑛 �1 + 𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
�� − 𝐼𝐼𝑗𝑗𝑛𝑛𝑍𝑍𝑙𝑙𝑛𝑛� �𝑗𝑗

𝐵𝐵10
2
� (9) 

Insert equation (6) and equation (9) into equation (2): 

𝐼𝐼𝑖𝑖𝑛𝑛 = 𝑉𝑉𝑗𝑗𝑛𝑛 �2 + 𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
�� �𝑗𝑗 𝐵𝐵10

2
� − 𝐼𝐼𝑗𝑗𝑛𝑛 �1 +

𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
�� (10) 

Utilizing equation (1), equation (2), equation (7), and 
equation (10), we can articulate 𝐼𝐼𝑖𝑖𝑛𝑛  and 𝐼𝐼𝑗𝑗𝑛𝑛  in terms of 

𝑉𝑉𝑖𝑖𝑛𝑛 , 𝑉𝑉𝑗𝑗𝑛𝑛, and 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛  as equation (7) and equation (10) are 
presented, and to simplify these equations, we proceed 
with the following steps where 𝐷𝐷 = �2 +

𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗
𝐵𝐵10
2
�� �𝑗𝑗 𝐵𝐵10

2
� and 𝐸𝐸 = �1 + 𝑍𝑍𝑙𝑙𝑛𝑛 �𝑗𝑗

𝐵𝐵10
2
��. 

Subsequently, equation (7) and equation (10) are 
reformulated to equation (11) and equation (12), 

𝑉𝑉𝑡𝑡𝑛𝑛 = 𝑉𝑉𝑗𝑗𝑛𝑛𝐸𝐸 − 𝐼𝐼𝑗𝑗𝑛𝑛𝑍𝑍𝑙𝑙𝑛𝑛  (11) 

𝐼𝐼𝑖𝑖𝑛𝑛 = 𝑉𝑉𝑗𝑗𝑛𝑛𝐷𝐷 − 𝐼𝐼𝑗𝑗𝑛𝑛𝐸𝐸 (12) 

Insert equation (11) and equation (12) into equation 
(1): 

𝐼𝐼𝑗𝑗𝑛𝑛 =
𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛−𝑉𝑉𝑖𝑖𝑛𝑛+𝑉𝑉𝑗𝑗𝑛𝑛�𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛𝐷𝐷+𝐸𝐸�

�𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛𝐸𝐸+𝑍𝑍𝑙𝑙𝑛𝑛�
 (13) 

To simplify the complexities of equation (13), consider 
taking 𝑀𝑀 = 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛𝐷𝐷 + 𝐸𝐸 and 𝑁𝑁 = 𝑍𝑍𝑠𝑠𝑠𝑠𝑛𝑛𝐸𝐸 + 𝑍𝑍𝑙𝑙𝑛𝑛. 

𝐼𝐼𝑗𝑗𝑛𝑛 = 1
𝑁𝑁
�𝑉𝑉𝑗𝑗𝑛𝑛𝑀𝑀 − 𝑉𝑉𝑖𝑖𝑛𝑛 + 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛� (14) 

Put equation (14) into equation (12) instead: 

𝐼𝐼𝑖𝑖𝑛𝑛 = 𝑉𝑉𝑗𝑗𝑛𝑛 �𝐷𝐷 − 𝑀𝑀 𝐸𝐸
𝑁𝑁
� + �𝑉𝑉𝑖𝑖𝑛𝑛 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛�

𝐸𝐸
𝑁𝑁

 (15) 

Matrix representations of equation (14) and equation 
(15) are also possible: 

�
𝐼𝐼𝑖𝑖𝑛𝑛
𝐼𝐼𝑗𝑗𝑛𝑛
� = �

𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛 𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛
𝐴𝐴𝑗𝑗𝑖𝑖𝑛𝑛 𝐴𝐴𝑗𝑗𝑗𝑗𝑛𝑛

� �
𝑉𝑉𝑖𝑖𝑛𝑛
𝑉𝑉𝑗𝑗𝑛𝑛
� + �

𝑊𝑊𝑖𝑖𝑖𝑖𝑛𝑛
𝑊𝑊𝑗𝑗𝑖𝑖𝑛𝑛

� 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛  (16) 

where 𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛 = 𝐸𝐸
𝑁𝑁

, 𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛 = 𝐷𝐷 −𝑀𝑀 𝐸𝐸
𝑁𝑁

, 𝐴𝐴𝑗𝑗𝑖𝑖𝑛𝑛 = − 1
𝑁𝑁

, 

𝐴𝐴𝑗𝑗𝑗𝑗𝑛𝑛 = 𝑀𝑀
𝑁𝑁

, 𝑊𝑊𝑖𝑖𝑖𝑖𝑛𝑛 = − 𝐸𝐸
𝑁𝑁

, and 𝑊𝑊𝑗𝑗𝑖𝑖𝑛𝑛 = 1
𝑁𝑁

. We can prove 
that the matrix 𝐴𝐴 is symmetrical, i.e., 𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛 = 𝐴𝐴𝑗𝑗𝑖𝑖𝑛𝑛 . The 

 
Figure 1. AIPFC equivalent circuit diagram. 



B.N. Bhukya et al. / Journal of Mechatronics, Electrical Power, and Vehicular Technology 16 (2025) 52-68 57 

symmetry of matrix 𝐴𝐴  is very important, which can 
make 𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛  and 𝐴𝐴𝑗𝑗𝑗𝑗𝑛𝑛  be divided into two parts as 
equation (17) and equation (18), 

𝐴𝐴𝑖𝑖𝑖𝑖𝑛𝑛 = −𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛 + 𝐴𝐴𝑖𝑖𝑛𝑛
0 = −�𝐷𝐷 −𝑀𝑀 𝐸𝐸

𝑁𝑁
�+ �𝐷𝐷 − (𝑀𝑀−

1) 𝐸𝐸
𝑁𝑁
� = 𝐸𝐸

𝑁𝑁
 (17) 

𝐴𝐴𝑗𝑗𝑗𝑗𝑛𝑛 = −𝐴𝐴𝑗𝑗𝑖𝑖𝑛𝑛 + 𝐴𝐴𝑗𝑗𝑛𝑛
0 = −�− 1

𝑁𝑁
� + 1

𝑁𝑁
(𝑀𝑀− 1) = 𝑀𝑀

𝑁𝑁
 (18) 

For simplicity's sake, we will ignore the 
transmission line and series coupling transformer 
resistances while calculating the active and reactive 
power injections at buses 𝑖𝑖𝑛𝑛  and 𝑗𝑗𝑛𝑛  connected to two 
current sources as equation (19) to equation (22), 
Figure 2: 

𝑃𝑃𝑖𝑖𝑛𝑛
𝑠𝑠𝑠𝑠 =

�1−𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2 �

𝐻𝐻
𝑉𝑉𝑖𝑖𝑛𝑛𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛 sin�𝜃𝜃𝑖𝑖𝑛𝑛 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛� (19) 

𝑄𝑄𝑖𝑖𝑛𝑛
𝑠𝑠𝑠𝑠 = −

�1−𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2 �

𝐻𝐻
𝑉𝑉𝑖𝑖𝑛𝑛𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛 cos�𝜃𝜃𝑖𝑖𝑛𝑛 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛� (20) 

𝑃𝑃𝑗𝑗𝑛𝑛
𝑠𝑠𝑠𝑠 = −

𝑉𝑉𝑗𝑗𝑛𝑛𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛
𝐻𝐻

sin�𝜃𝜃𝑗𝑗𝑛𝑛 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛� (21) 

𝑄𝑄𝑗𝑗𝑛𝑛
𝑠𝑠𝑠𝑠 =

𝑉𝑉𝑗𝑗𝑛𝑛𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛
𝐻𝐻

sin�𝜃𝜃𝑗𝑗𝑛𝑛 − 𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛� (22) 

where 𝐻𝐻 = 𝑋𝑋𝑠𝑠𝑠𝑠𝑛𝑛 �1− 𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2
�+ 𝑋𝑋𝑙𝑙𝑛𝑛  and 𝑃𝑃𝑖𝑖𝑛𝑛

𝑠𝑠𝑠𝑠, 𝑄𝑄𝑖𝑖𝑛𝑛
𝑠𝑠𝑠𝑠, 𝑃𝑃𝑗𝑗𝑛𝑛

𝑠𝑠𝑠𝑠, 
𝑄𝑄𝑗𝑗𝑛𝑛
𝑠𝑠𝑠𝑠 are the series-injected active and reactive powers at 

buses 𝑖𝑖𝑛𝑛 and 𝑗𝑗𝑛𝑛 by the AIPFC. 
Figure 3 illustrates the equivalent power injection 

model of an AIPFC. The analysis indicates that the 
admittance matrix retains its original structure and 
symmetry, similar to the scenario without the IPFC as 
equation (23) to equation (30). 

𝐼𝐼𝑖𝑖𝑗𝑗𝑛𝑛 = �𝑉𝑉𝑖𝑖𝑛𝑛 − 𝑉𝑉𝑗𝑗𝑛𝑛�𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛 + 𝑉𝑉𝑖𝑖𝑛𝑛𝐴𝐴𝑖𝑖𝑛𝑛
0  (23) 

𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛 = �𝑉𝑉𝑗𝑗𝑛𝑛 − 𝑉𝑉𝑖𝑖𝑛𝑛�𝐴𝐴𝑖𝑖𝑗𝑗𝑛𝑛 + 𝑉𝑉𝑗𝑗𝑛𝑛𝐴𝐴𝑗𝑗𝑛𝑛
0  (24) 

𝑃𝑃𝑖𝑖𝑗𝑗𝑛𝑛 = 𝑅𝑅𝑅𝑅�𝑉𝑉𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑗𝑗𝑛𝑛
∗ � = − 1

𝐻𝐻
𝑉𝑉𝑖𝑖𝑛𝑛𝑉𝑉𝑗𝑗𝑛𝑛 sin𝜃𝜃𝑖𝑖𝑗𝑗𝑛𝑛  (25) 

𝑄𝑄𝑖𝑖𝑗𝑗𝑛𝑛 = 𝐼𝐼𝐼𝐼�𝑉𝑉𝑖𝑖𝑛𝑛𝐼𝐼𝑖𝑖𝑗𝑗𝑛𝑛
∗ � =

−�1+𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2 �𝑉𝑉𝑖𝑖𝑛𝑛

2 +𝑉𝑉𝑖𝑖𝑛𝑛𝑉𝑉𝑗𝑗𝑛𝑛 cos𝜃𝜃𝑖𝑖𝑗𝑗𝑛𝑛
𝐻𝐻

 (26) 

𝑃𝑃𝑗𝑗𝑖𝑖𝑛𝑛 = 𝑅𝑅𝑅𝑅�𝑉𝑉𝑗𝑗𝑛𝑛𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛
∗ � = − 1

𝐻𝐻
𝑉𝑉𝑖𝑖𝑛𝑛𝑉𝑉𝑗𝑗𝑛𝑛 sin 𝜃𝜃𝑗𝑗𝑖𝑖𝑛𝑛  (27) 

𝑄𝑄𝑗𝑗𝑖𝑖𝑛𝑛 = 𝐼𝐼𝐼𝐼�𝑉𝑉𝑗𝑗𝑛𝑛𝐼𝐼𝑗𝑗𝑖𝑖𝑛𝑛
∗ � = 𝑉𝑉𝑗𝑗𝑛𝑛 �

1
𝐻𝐻
�−𝑉𝑉𝑗𝑗𝑛𝑛 + 𝑉𝑉𝑖𝑖𝑛𝑛 cos𝜃𝜃𝑗𝑗𝑖𝑖𝑛𝑛� −

�𝑋𝑋𝑠𝑠𝑠𝑠𝑛𝑛 �2− 𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2
�+ 𝑋𝑋𝑙𝑙𝑛𝑛�

𝐵𝐵10
2
� (28) 

𝑃𝑃𝑐𝑐𝑐𝑐 = ∑ 𝑃𝑃𝑠𝑠𝑒𝑒𝑛𝑛𝑛𝑛 = 0 (29) 

𝑃𝑃𝑠𝑠𝑒𝑒𝑛𝑛 = 𝑅𝑅𝑅𝑅�𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛𝐼𝐼𝑖𝑖𝑛𝑛
∗ � = �2 �𝐵𝐵10

2
�
3

+
𝐺𝐺
𝐻𝐻
� 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛𝑉𝑉𝑗𝑗𝑛𝑛 sin�𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛 − 𝜃𝜃𝑗𝑗𝑛𝑛�

1
𝐻𝐻
�1 −

𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2
� 𝑉𝑉𝑠𝑠𝑠𝑠𝑛𝑛𝑉𝑉𝑖𝑖𝑛𝑛 sin�𝜃𝜃𝑠𝑠𝑠𝑠𝑛𝑛 − 𝜃𝜃𝑖𝑖𝑛𝑛� = 0 (30) 

where  𝐺𝐺 = �−𝑋𝑋𝑠𝑠𝑠𝑠𝑛𝑛 �2 − 𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2
� 𝐵𝐵10

2
+ �1 −

𝑋𝑋𝑙𝑙𝑛𝑛
𝐵𝐵10
2
�� �1 − 𝑋𝑋𝑙𝑙𝑛𝑛

𝐵𝐵10
2
�. 

Controller design for AIPFC involves designing the 
control algorithms and tuning the control parameters 
to achieve the desired system performance. 
Optimization techniques, such as GA, PSO, or MPC, 
can be employed to optimize the control parameters of 
the AIPFC. These techniques aim to minimize objective 
functions, such as transmission losses, voltage 
deviations, or congestion levels, while satisfying 
operational constraints. Modelling and control 
strategies for AIPFC are typically validated through 
simulation studies. A power system simulation tool, 
such as MATLAB, can be used to simulate the behavior 
of the AIPFC system under different operating 
conditions and scenarios. The simulation studies 
validate the effectiveness and performance of the 
AIPFC in congestion management and power flow 
control [21]. 

C. AI/ML in congestion management 

Algorithms in AI and ML serve as fundamental 
components of numerous cutting-edge technologies 
and applications. These algorithms allow machines to 
acquire knowledge from data, make informed decisions, 
and execute tasks that have historically necessitated 
human intellect. Recent years have witnessed 
remarkable progress in AI and ML algorithms, 
propelled by enhanced computational capabilities, the 
accessibility of extensive datasets, and innovations in 
algorithmic methodologies. AI denotes the emulation 
of human cognitive functions in machines. This 
includes a wide array of methods and algorithms that 
allow machines to observe, analyze, learn, and make 
informed choices. The objective of AI is to emulate 
human-like intelligence within machines, allowing 
them to execute tasks independently and with 

 

Figure 2. AIPFC depicted using electricity as a supply. 

 
Figure 3. AIPFC π-model for power injections. 
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adaptability. Symbolic AI utilizes rule-based systems 
and knowledge representation as fundamental 
approaches to address various problems. Statistical AI 
employs statistical and probabilistic techniques to 
identify patterns within data and generate predictions 
[22]. 

ML techniques are typically categorized into three 
main types: supervised learning, unsupervised learning, 
and RL. In supervised learning, the algorithm is trained 
with labeled data, encompassing both input features 
and their associated output labels. The model is 
structured to create links between inputs and outputs, 
enabling it to produce predictions for previously 
unseen data. Unsupervised learning functions on data 
that lacks labels, uncovering concealed patterns and 
structures without any predetermined outputs. This 
method is frequently applied in the areas of clustering, 
dimensionality reduction, and anomaly detection. RL, 
conversely, entails acquiring knowledge through 
engagement with an environment. The algorithm 
gathers feedback through rewards or penalties related 
to its actions and refines its strategy to enhance 
cumulative rewards over time. This method proves to 
be especially beneficial for problems involving dynamic 
and sequential decision-making. Utilizing ML 
techniques allows AI systems to enhance their 
adaptability and intelligence, facilitating automation 
and data-driven decision-making in a range of 
applications such as power systems, healthcare, finance, 
and industrial automation. Nonetheless, as ML 
progresses, it is essential to tackle challenges like model 
interpretability, bias, and computational efficiency to 
ensure its broader acceptance [23]. 

D. AI/ML techniques for congestion 
management 

The application of AI and ML techniques 
significantly transforms the management of congestion 
in power transmission networks, thereby enhancing 
grid stability and efficiency. Conventional methods for 
managing congestion depend on fixed models and 
heuristic optimization techniques, which frequently 
face challenges due to the growing complexity of 
contemporary power systems. Methods based on AI 
and ML, especially deep learning (DL), RL, and 
evolutionary optimization, provide data-driven 
solutions that improve decision-making, enable real-
time adaptability, and enhance predictive capabilities. 
For example, supervised learning models examine past 
congestion data to forecast future bottlenecks, allowing 
for proactive mitigation strategies. RL algorithms 
enhance power flow control by dynamically modifying 
system parameters, minimizing reliance on established 

rule-based approaches. Furthermore, hybrid AI models 
combine ML with optimization methods like GA and 
PSO to enhance rescheduling and load-balancing 
strategies. The integration of AI/ML with an AIPFC 
improves real-time voltage regulation and power 
redistribution, effectively reducing congestion impacts. 
The strategic integration of various AIPFC devices 
through AI-driven controllers enhances operational 
efficiency and minimizes transmission losses. 
Furthermore, models utilizing AI for anomaly 
detection pinpoint possible failures and security risks, 
thereby guaranteeing the reliability of systems. The 
incorporation of AI and ML enables power utilities to 
shift from a reactive approach to a proactive strategy in 
managing congestion. This transition results in greater 
grid resilience, lower operational costs, and improved 
energy distribution. As power systems advance with the 
integration of renewable energy and the development 
of smart grids, the role of AI/ML-driven congestion 
management will be crucial for realizing an optimized 
and sustainable energy infrastructure [24]. 

The application of AI/ML techniques in power 
systems is effectively demonstrated through their 
successful use in load forecasting, fault detection, 
voltage control, renewable energy integration, and 
congestion management. Through the application of 
sophisticated analytics and informed decision-making, 
these utilities and system operators have realized better 
grid reliability, optimized power flow, and improved 
congestion management capabilities [25]. ML 
techniques, including GA, PSO, and RL, can be 
combined with OPF algorithms to enhance power flow 
optimization and reduce congestion. The optimization 
methods take into account a range of constraints and 
objectives, such as transmission line capacities, 
generation limits, voltage limits, and economic factors, 
in order to identify the most efficient and secure 
operating conditions that reduce congestion [26]. 

The combination of the AIPFC with ML techniques 
offers a robust approach to managing congestion in 
power transmission systems. AIPFC efficiently 
redistributes power flow among various transmission 
lines, reducing congestion and improving the overall 
stability of the grid. Integrating ML allows for the 
creation of predictive models that can forecast 
congestion events using both historical and real-time 
data. These models facilitate proactive decision-making, 
enabling the AIPFC to dynamically modify its control 
parameters to enhance power distribution, minimize 
transmission losses, and ensure system reliability. 
Employing ML-based optimization allows for adaptive 
and data-driven congestion management strategies, 
enhancing their efficiency in contrast to conventional 
methods. 
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E. Proposed methodology: Integration of IPFC 
with AI/ML algorithms 

The selection of an optimization algorithm is 
contingent upon the particular needs of the congestion 
management issue, the intricacies of the power system 
model, and the intended goals. Every algorithm 
possesses unique strengths and limitations, and the 
choice must take into account factors like 
computational efficiency, accuracy, convergence 
properties, and the capacity to manage nonlinearities 
and constraints related to AIPFC operation [27]. The 
incorporation of AIPFC alongside AI/ML algorithms 
has the potential to significantly enhance its capabilities 
and optimize congestion management within power 
transmission systems. Integration of AI/ML algorithms 
with AIPFC presents an opportunity to enhance power 
flow optimization and effectively manage congestion. 
These algorithms take into account multiple factors, 
including transmission line capacities, generation 
limits, voltage constraints, and economic objectives, to 
identify the most optimal operating conditions. 
Through ongoing analysis of real-time data and the 
application of optimization techniques, AIPFC is 
capable of dynamically modifying the injected voltages 
to reduce congestion, decrease transmission losses, and 
improve overall system efficiency [28]. The creation of 
AI/ML models aimed at predicting and managing 
congestion necessitates a deep understanding of data 
analysis, careful algorithm selection, thorough model 
training, and effective system integration. Validating 
and fine-tuning the models with real-world data is 
crucial, along with the continuous monitoring of their 
performance, to guarantee precise congestion 
prediction and the implementation of effective control 
strategies with AIPFC [29]. 

F. Constriction factor particle swarm 
optimization 

PSO is an optimization technique that utilizes a 
population-based approach, mimicking the dynamics 
of a swarm of particles navigating through a problem 
space. Every particle signifies a possible solution, and 
its dynamics are shaped by its individual best-known 
position as well as the best-known position of the entire 
swarm [30]. PSO algorithms can be utilized to enhance 
IPFC control settings through the iterative adjustment 
of particles' positions, focusing on objectives such as 
congestion reduction or power flow enhancement. The 
group gathers towards the best control values via 
interactions between the particles. Within the 
framework of PSO, the constriction factor serves as a 
crucial parameter that affects the dynamics and 
convergence characteristics of particles navigating the 

search space. PSO is an optimization algorithm that 
operates on a population basis, drawing inspiration 
from the social behaviors observed in bird flocking and 
fish schooling [31]. The equation for updating velocity 
in PSO is comprised of two primary elements: the 
cognitive component and the social component. The 
cognitive aspect steers particles towards their 
individual optimal solution (the best solution 
discovered by each particle), whereas the social aspect 
leads particles towards the best solution identified by 
the entire swarm. The constriction factor serves to 
equilibrate the significance of these two components. 

The constriction factor limits the maximum 
velocity that a particle can achieve. Typically, it is 
established within the range of 0 to 1. The equation for 
updating velocity, incorporating the constriction factor, 
is presented as equation (31) to equation (35). 

𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝜔𝜔𝑉𝑉𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1 × �𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑐𝑐2𝑟𝑟2 ×
�𝐺𝐺𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘� (31) 

𝜔𝜔 = 𝜔𝜔𝑚𝑚𝑎𝑎𝑒𝑒 −
𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚−𝜔𝜔min
𝐼𝐼𝑡𝑡𝑠𝑠𝐼𝐼𝑚𝑚𝑎𝑎𝑚𝑚

× 𝐼𝐼𝑃𝑃𝑅𝑅𝑟𝑟 (32) 

𝑋𝑋𝑖𝑖𝑘𝑘+1 = 𝑋𝑋𝑖𝑖𝑘𝑘 + 𝑉𝑉𝑖𝑖𝑘𝑘+1 (33) 

𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝐾𝐾�𝑉𝑉𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1 × �𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘� + 𝑐𝑐2𝑟𝑟2 ×
�𝐺𝐺𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑘𝑘 − 𝑋𝑋𝑖𝑖𝑘𝑘�� (34) 

𝐾𝐾 = 2
2−𝜑𝜑−�𝜑𝜑2−4𝜑𝜑

 (35) 

where 𝑉𝑉𝑖𝑖𝑘𝑘+1 is velocity of individual 𝑖𝑖 at iteration 𝑘𝑘 + 1, 
𝑉𝑉𝑖𝑖𝑘𝑘 is velocity of individual 𝑖𝑖 at iteration 𝑘𝑘, 𝜔𝜔 is inertia 
weight parameter, 𝑐𝑐1  and 𝑐𝑐2  are acceleration 
coefficients, 𝑟𝑟1 and 𝑟𝑟2 are random numbers between 0 
and 1, 𝑋𝑋𝑖𝑖𝑘𝑘  is position of individual 𝑖𝑖  at iteration 𝑘𝑘 , 
𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑖𝑖𝑘𝑘  is best position of individual 𝑖𝑖  at iteration 𝑘𝑘 , 
𝐺𝐺𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑘𝑘 is best position of the group until iteration 𝑘𝑘, 
𝜔𝜔𝑚𝑚𝑎𝑎𝑒𝑒  and 𝜔𝜔𝑚𝑚𝑖𝑖𝑛𝑛  are initial and final inertia parameter 
weights, 𝐼𝐼𝑃𝑃𝑅𝑅𝑟𝑟𝑚𝑚𝑎𝑎𝑒𝑒 is maximum iteration number, 𝐼𝐼𝑃𝑃𝑅𝑅𝑟𝑟 is 
current iteration number, 𝑋𝑋𝑖𝑖𝑘𝑘+1  is position of 
individual 𝑖𝑖 at iteration 𝑘𝑘 + 1, and 𝜑𝜑 = 𝑐𝑐1 + 𝑐𝑐2, 𝜑𝜑 > 4. 

The constriction factor 𝜑𝜑  serves as a scaling 
element that restricts the updates to velocity. This 
approach guarantees that the particles maintain a 
controlled speed, preventing them from overshooting 
the optimal solution. The constriction factor is 
frequently selected as a constant, like 0.729, which has 
demonstrated effective convergence characteristics in 
numerous instances. Modifying the constriction factor 
allows for the manipulation of the algorithm's 
exploration and exploitation dynamics. Increased 
values of the constriction factor facilitate exploration, 
enabling particles to navigate the search space more 
thoroughly. Conversely, reduced values of the 
constriction factor encourage exploitation, 
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emphasizing the pursuit of both local and global 
optimal solutions. 

G. Model predictive control 

MPC represents a sophisticated control 
methodology that employs an optimization-driven 
strategy to ascertain control actions. The process entails 
establishing an optimization problem characterized by 
a specific objective and constraints, followed by solving 
it using a receding horizon approach. The application 
of MPC to AIPFC control involves the formulation of 
an optimization problem aimed at minimizing 
congestion or maximizing power flow while adhering 
to system constraints. The optimization problem is 
addressed iteratively at each time step, taking into 
account the latest system measurements and forecasts. 
In recent years, it has been applied in models for 
balancing power systems and in the field of power 
electronics. Reference [32] dynamic models of the 
process are fundamental to model predictive 
controllers, typically derived from linear empirical 
models through system identification techniques. The 
primary benefit of MPC lies in its ability to optimize the 
current timeslot while considering future timeslots as 
well. Through the application of MPC in conjunction 
with an AIPFC, it is possible to actively manage 
congestion by dynamically adjusting the control 
settings of the AIPFC in real-time, informed by the 
anticipated behavior of the system. The MPC 
framework facilitates the consideration of system 
dynamics, constraints, and future predictions to enable 
proactive control decisions, resulting in effective 
congestion management. 

H. Formulation of the congestion management 
problem 

The objective function utilized in OPF for reducing 
generation costs seeks to determine an optimal 
generation schedule that minimizes the total expense of 
electricity production while satisfying the demand and 
operational constraints of the power system. 
Consequently, the result of this optimization problem 
will yield the minimum achievable generation cost. The 
objective function can be articulated as follows, taking 
into account the operating costs of the generator: 

𝐽𝐽 = ∑ 𝐶𝐶𝑖𝑖(𝑃𝑃𝑖𝑖)𝑁𝑁𝐺𝐺
𝑖𝑖=1  (36) 

where NG is number of generators and 𝐶𝐶𝑖𝑖(𝑃𝑃𝑖𝑖) is fuel 
cost function. Mathematically, the objective function 
can be represented as: 

min 𝑐𝑐(𝑥𝑥) = min∑ �𝑐𝑐𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑃𝑃𝑔𝑔𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑃𝑃𝑔𝑔𝑖𝑖2 �
𝑁𝑁𝑔𝑔
𝑖𝑖=1  (37) 

where 𝑎𝑎𝑖𝑖 , 𝑃𝑃𝑖𝑖 , 𝑐𝑐𝑖𝑖  are cost function coefficients of the 
generator at bus 𝑖𝑖, used in the fuel cost of the function. 

The objective function aggregates the costs 
associated with the power output of each generator, 
taking into account their individual cost coefficients. 
The cost coefficient indicates the expense associated 
with each unit of power produced by every generator. 
The optimization of equation (36) will adhere to both 
equality and inequality constraints. 

• Equality constraints: 

𝑃𝑃𝐺𝐺𝑖𝑖 − 𝑃𝑃𝐷𝐷𝑖𝑖 − ∑ |𝑉𝑉𝑖𝑖|�𝑉𝑉𝑗𝑗��𝑌𝑌𝑖𝑖𝑗𝑗� cos�𝜃𝜃𝑖𝑖𝑗𝑗 + 𝛿𝛿𝑗𝑗 − 𝛿𝛿𝑖𝑖�𝑛𝑛𝑎𝑎
𝑗𝑗=1 = 0

 (38) 

𝑄𝑄𝐺𝐺𝑖𝑖 − 𝑄𝑄𝐷𝐷𝑖𝑖 − ∑ |𝑉𝑉𝑖𝑖|�𝑉𝑉𝑗𝑗��𝑌𝑌𝑖𝑖𝑗𝑗� sin�𝜃𝜃𝑖𝑖𝑗𝑗 + 𝛿𝛿𝑗𝑗 − 𝛿𝛿𝑖𝑖�𝑛𝑛𝑎𝑎
𝑗𝑗=1 = 0

 (39) 

• Inequality constraints: 

𝑃𝑃𝐺𝐺𝑖𝑖min ≤ 𝑃𝑃𝐺𝐺𝑖𝑖 ≤ 𝑃𝑃𝐺𝐺𝑖𝑖max, 𝑖𝑖 = 1, … , NG (40) 

𝑄𝑄𝐺𝐺𝑖𝑖min ≤ 𝑄𝑄𝐺𝐺𝑖𝑖 ≤ 𝑄𝑄𝐺𝐺𝑖𝑖max, 𝑖𝑖 = 1, … , NG (41) 

𝑃𝑃𝐷𝐷𝑖𝑖min ≤ 𝑃𝑃𝐷𝐷𝑖𝑖 ≤ 𝑃𝑃𝐷𝐷𝑖𝑖max, 𝑖𝑖 = 1, … , NG (42) 

𝑄𝑄𝐷𝐷𝑖𝑖min ≤ 𝑄𝑄𝐷𝐷𝑖𝑖 ≤ 𝑄𝑄𝐷𝐷𝑖𝑖max , 𝑖𝑖 = 1, … , NG (43) 

𝑉𝑉𝑖𝑖min ≤ 𝑉𝑉𝑖𝑖 ≤ 𝑉𝑉𝑖𝑖max, 𝑖𝑖 = 1, … , NL (44) 

𝑇𝑇𝑖𝑖min ≤ 𝑇𝑇𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖max, 𝑖𝑖 = 1, … , NT (45) 

𝑆𝑆𝑖𝑖 ≤ 𝑆𝑆𝑖𝑖max, 𝑖𝑖 = 1, … , NL (46) 

where 𝑃𝑃𝐺𝐺𝑖𝑖  and 𝑄𝑄𝐺𝐺𝑖𝑖  represent the real and reactive 
power output of generator 𝑖𝑖, respectively, 𝑃𝑃𝐷𝐷𝑖𝑖 and 𝑄𝑄𝐷𝐷𝑖𝑖  
denote the real and reactive power demand at bus 𝑖𝑖 , 
𝑃𝑃𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑃𝑃𝐺𝐺𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒  and 𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑄𝑄𝐺𝐺𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒  are the minimum and 
maximum generation limits for real and reactive power, 
𝑃𝑃𝐷𝐷𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑃𝑃𝐷𝐷𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒  and 𝑄𝑄𝐷𝐷𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 , 𝑄𝑄𝐷𝐷𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒  are the minimum and 
maximum load bounds for real and reactive power, 𝑉𝑉𝑖𝑖  
is the voltage magnitude at bus 𝑖𝑖, while 𝑉𝑉𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑉𝑉𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 
are the permissible voltages range at bus 𝑖𝑖, 𝑇𝑇𝑖𝑖 refers to 
the tap setting of the transformer 𝑖𝑖, bounded by 𝑇𝑇𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛 
and 𝑇𝑇𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒 , 𝑆𝑆𝑖𝑖  represents the apparent power flow 
through branch 𝑖𝑖, subject to its maximum limit 𝑆𝑆𝑖𝑖𝑚𝑚𝑎𝑎𝑒𝑒, 
NL is the number of load buses, and NT the number of 
tap-changing transformers. 

The optimization algorithm will modify the power 
outputs of the generators to identify the combination 
that reduces the total cost while meeting the system's 
demand and operational constraints. The limitations 
encompass power balance, generator ramp rate 
constraints, voltage thresholds, and transmission line 
capacity restrictions. 

Figure 4 presents the detailed procedure for 
addressing the optimization problem using the 
proposed methods. The flowchart illustrates the 
methodology for addressing power system congestion 
through a hybrid optimization strategy. The process 
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begins with the input of system data, followed by the 
calculation of AC power flow utilizing the Newton-
Raphson (NR) method. The load is subsequently raised 
in a stepwise manner to detect congestion. Upon 
detection of congestion, a selection process for 
rescheduling generators is initiated. The parameters for 
the optimization algorithm, constriction factor-particle 
swarm optimization (CFPSO), have been established, 
and the particles have been initialized accordingly. The 
algorithm systematically refines particle velocities and 
positions according to a fitness function aimed at 
reducing generation costs. This process persists until 
the maximum iteration count is achieved, culminating 
in the optimal solution for congestion management. 

This flowchart distinctly integrates MPC for 
dynamic adjustment of AIPFC, which is a novel 
addition not found in previous works. The fusion of 
MPC and AIPFC (MPC-AIPFC) with CFPSO 
distinguishes this framework from traditional AI-based 
congestion control models. 

III. Results and Discussions 

The methodology put forward has undergone 
testing on an IEEE 30-bus system as illustrated in the 
figure. The network consists of 30-buses, 41 
interconnected lines, and six generators. The load flow 
for the IEEE 30 bus test system has been derived 
utilizing MATLAB software, and the findings have 
been documented accordingly. Only buses that are fully 
loaded are taken into account for the placement of the 
IPFC. The findings have been examined under normal 
loading, as well as 10 %, 15 %, and 20 % loading 
conditions. 

A. Normal condition case 

The proposed CFPSO and MPC with AIPFC 
techniques focusses on optimizing power system 
scheduling during normal operating conditions, 
specifically targeting the minimization of generator fuel 
costs. The findings, as shown in Table 1, reveal that 
CFPSO combined with AIPFC attains a minimum fuel 
cost of $799.904/h, whereas MPC-AIPFC lowers it even 
further to $798.809/h, both surpassing the performance 
of the conventional NR method. The results illustrate 
how advanced optimization methods can effectively 
lower operational costs while complying with system 
constraints, including limits on control variables and 
transmission line flow restrictions. Nonetheless, 
although the comparative analysis offers valuable 
insights into cost minimization, the study falls short in 
providing a thorough discussion of the underlying 

 
Figure 4. Enhanced flowchart for congestion management using 
MPC-AIPFC and CFPSO. 

Table 1. 
Optimal values for the IEEE-30 bus system under normal case 
conditions. 

Control Variables Normal Case Condition 

NR CFPSO-
AIPFC 

MPC-
AIPFC 

Real power 
generation (pu) 

𝑃𝑃𝐺𝐺1 1.5929 1.7766 1.7695 

𝑃𝑃𝐺𝐺2 0.5812 0.4882 0.4877 

𝑃𝑃𝐺𝐺3 0.1287 0.2134 0.2111 

𝑃𝑃𝐺𝐺4 0.1871 0.12 0.1182 

𝑃𝑃𝐺𝐺5 0.2242 0.2133 0.2129 

𝑃𝑃𝐺𝐺6 0.211 0.1115 0.12 

Generator 
voltages (pu) 

𝑉𝑉𝐺𝐺1 1.05 1.05 1.1 

𝑉𝑉𝐺𝐺2 1.045 0.9505 1.0878 

𝑉𝑉𝐺𝐺3 1.01 0.95 1.0698 

𝑉𝑉𝐺𝐺4 1.05 1.1 1.1 

𝑉𝑉𝐺𝐺5 1.01 0.95 1.0619 

𝑉𝑉𝐺𝐺6 1.05 1.1 1.1 

Losses (pu) 0.0911 0.089 0.0855 

Cost ($/h) 810.911 799.904 798.809 
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assumptions and their influence on system 
performance. 

A comprehensive examination of how these 
methodologies adjust to different load conditions, 
system contingencies, and dynamic grid scenarios 
would enhance the findings. Furthermore, a 
comprehensive analysis of the role of ML techniques in 
managing power transmission line congestion through 
AIPFC is crucial to demonstrate their practical 
importance. The study primarily emphasizes numerical 
cost comparisons, lacking a comprehensive discussion 
on the real-world applicability of the proposed methods. 
Broadening the conversation to incorporate sensitivity 
analysis, convergence behavior, and scalability to larger 
networks could strengthen the validity of the results 
presented, rendering them more persuasive for 
applications in power system optimization. 

The results from the proposed approach are 
illustrated in Figure 5, allowing for a comparison with 
several existing methods in the literature to validate the 
findings. This figure illustrates that, in comparison to 
current methodologies, the proposed CFPSO and MPC 
approaches yield enhanced outcomes. 

The total load demand of the practical system is 
established at 283.4 MW, representing the base load 
condition. The load flow studies are conducted, and the 
power distribution across various transmission lines is 
determined by ensuring compliance with the power 
balance equation. All control parameters are within the 
specified limits, as indicated in Table 1. The results of 
the normal case load flow analysis indicate that the 
thermal parameters of all transmission lines remain 
within the established limits. It is observed that Figure 6 
illustrates the absence of congestion in any of the 
transmission lines. The findings demonstrate that the 
integration of CFPSO and MPC with AIPFC 
significantly reduces congestion in comparison to 
scenarios lacking optimization. The optimization of 
power flows is substantial, ensuring both system 
reliability and efficiency are upheld. 

B. Congestion due to overloading condition 

This section addresses transmission congestion 
resulting from overload, where the system experiences 
congestion due to heightened demand. The 
methodology under consideration has undergone 
testing under loading conditions of 10 %, 15 %, and 
20 %, as illustrated in Figure 7. The AIPFC efficiently 
mitigates power flow in the overloaded lines, 
maintaining them within operational thresholds. The 
absence of AIPFC leads to power flow exceeding safe 
limits, highlighting the critical role of this technology in 
alleviating congestion and enhancing grid reliability. 

Figure 6 indicates that in the absence of AIPFC, the 
line connecting buses 1 and 2 experiences the highest 
level of congestion. It has been noted that two lines, 
specifically lines 4–12 and 4-6, are linked to bus 4. 
Therefore, lines 3–4 and 4–12 are identified as the 
suggested sites for the installation of the AIPFC. It has 
been noted that the congestion in the line decreases 

 
Figure 5. Comparison of fuel costs. 

 
Figure 6. Power analysis under normal conditions. 
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following the placement of the AIPFC at the designated 
location. 

The dynamics of power flow exceeding 10 % 
loading and its implications for congestion in the grid. 
Nonetheless, when the demand exceeds the grid's 
capacity, it can put pressure on the system, resulting in 
congestion. Power flow congestion arises when the 
existing transmission routes reach their limits, leading 
to inefficiencies and the risk of voltage instability. 
When the loading on the power grid surpasses 10 %, the 
transmission lines and other grid components can 
become overloaded, jeopardizing their capacity to 
handle the surplus power. The power flow becomes 
constrained and concentrated on limited transmission 
corridors, resulting in congestion, as illustrated in 
Table 2 and Figure 8. CFPSO combined with AIPFC 
and MPC integrated with AIPFC both enhance power 
flow regulation; however, MPC-AIPFC demonstrates 
superior performance in maintaining power flow 
stability and ensuring it remains below critical 
thresholds. These optimization techniques play a 

crucial role in mitigating congestion and enhancing the 
efficiency of power transmission systems. 

When a transmission line exceeds its rated capacity, 
there is an increase in power flow. The elevated current 
leads to heightened resistive losses, potentially resulting 
in the heating of the line. The thermal limits of the line 
establish the highest current it can conduct without 
experiencing overheating. Exceeding these limits can 
lead to a range of problems, such as congestion. 
Congestion arises when the capacity of the 
transmission line is inadequate to meet the demands of 
power flow. A congested line indicates that the power 
flow is approaching or surpassing its maximum 
capacity. The implementation of CFPSO and MPC 

 
Figure 7. Line flows under different overloading conditions of the 
IEEE-30-bus system. 

Table 2. 
Optimal values for the IEEE-30 bus system under 10 % loading 
condition. 

Control Variables 
10 % Loading Condition 

NR CFPSO-
AIPFC 

MPC-
AIPFC 

Real power 
generation (pu) 

𝑃𝑃𝐺𝐺1 1.9054 1.9057 1.6948 

𝑃𝑃𝐺𝐺2 0.5812 0.5193 0.6048 

𝑃𝑃𝐺𝐺3 0.1287 0.2871 0.35 

𝑃𝑃𝐺𝐺4 0.1871 0.145 0.1734 

𝑃𝑃𝐺𝐺5 0.2242 0.224 0.2474 

𝑃𝑃𝐺𝐺6 0.211 0.136 0.12 

Generator 
voltages (pu) 

𝑉𝑉𝐺𝐺1 1.05 1.1 1.05 

𝑉𝑉𝐺𝐺2 1.045 1.0871 0.9501 

𝑉𝑉𝐺𝐺3 1.01 1.0685 0.95 

𝑉𝑉𝐺𝐺4 1.05 1.1 1.1 

𝑉𝑉𝐺𝐺5 1.01 1.0585 0.95 

𝑉𝑉𝐺𝐺6 1.05 1.1 1.1 

Losses (pu) 0.1202 0.0996 0.073 

Cost ($/h) 914.406 903.4810 902.6309 
 

 
Figure 8. Power analysis under 10 % loading condition. 
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alongside AIPFC techniques necessitates precise 
network models and advanced optimization algorithms 
to efficiently alleviate congestion and guarantee the 
dependable functioning of the transmission system, as 
illustrated in Table 3 and Figure 9. 

The integration of CFPSO and MPC algorithms 
enhances the optimization of power flow and control 
actions, whereas the AIPFC facilitates active control 
and real-time compensation. The CFPSO method 
enhances system operation to identify solutions that are 
free from congestion, which subsequently serve as 
inputs for the MPC control strategy. The control 
variables are adjusted by the MPC in accordance with 
these solutions, while considering the anticipated 
behavior of the system. At the same time, the AIPFC 

exerts control over power flows and voltages across 
various transmission lines, dynamically reallocating 
power to reduce congestion. Through the coordination 
of control actions between the AIPFC and the MPC 
algorithm, effective management of congestion is 
demonstrated in Table 4 and Figure 10. 

The generator output powers have been effectively 
rescheduled utilizing the CFPSO and MPC algorithm 
to alleviate congestion. Figure 11 presents the 
comprehensive results of the CFPSO and MPC 
algorithms in optimally rescheduling the output power 
of the participating generators to mitigate congestion. 
Figure 11 presents a comparison of the power flows 
before and after the placement of AIPFC. The analysis 
indicates a significant reduction in line congestion 
following the implementation of the AIPFC using the 
proposed method. To address the challenge of voltage 
deviation at the load buses, generator voltages were 
adjusted to maintain load bus voltages within 
acceptable limits. Consequently, the overall 
performance of the system has been enhanced while 
incurring minimal costs. The proposed methodology 
has undergone testing under normal load, as well as 
under 10 %, 15 %, and 20 % load conditions. 

C. Comparative analysis with previous work 

This section offers a comprehensive comparative 
examination of the suggested technique, our prior 
relevant efforts, and studies undertaken by other 
scholars in the field. The objective is to highlight the 
progress made by integrating MPC-AIPFC alongside 
CFPSO for efficient congestion management. Prior 
research conducted by the authors 
[30][31][32][33][34][35][36][37] predominantly 
concentrated on employing traditional IPFC models 
and conventional optimization techniques, including 
GA and PSO. These investigations exhibited effective 

Table 3. 
Optimal values for the IEEE-30-bus system under 15 % loading 
condition. 

Control Variables 
15 % Loading Condition 

NR CFPSO-
AIPFC 

MPC-
AIPFC 

Real power 
generation (pu) 

𝑃𝑃𝐺𝐺1 1.9902 1.9716 1.787 

𝑃𝑃𝐺𝐺2 0.66315 0.5369 0.6255 

𝑃𝑃𝐺𝐺3 0.189 0.35 0.35 

𝑃𝑃𝐺𝐺4 0.1137 0.1569 0.1909 

𝑃𝑃𝐺𝐺5 0.2597 0.2303 0.2509 

𝑃𝑃𝐺𝐺6 0.1753 0.12 0.1201 

Generator 
voltages (pu) 

𝑉𝑉𝐺𝐺1 1.05 1.1 1.05 

𝑉𝑉𝐺𝐺2 1.045 1.0873 0.95 

𝑉𝑉𝐺𝐺3 1.01 1.0688 0.95 

𝑉𝑉𝐺𝐺4 1.05 1.1 1.1 

𝑉𝑉𝐺𝐺5 1.01 1.0581 0.95 

𝑉𝑉𝐺𝐺6 1.05 1.1 1.1 

Losses (pu) 0.132 0.1067 0.0652 

Cost ($/h) 969.725 957.49 949.4770 
 

 
Figure 9. Power analysis under 15 % loading condition. 
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congestion alleviation but were constrained in dynamic 
adaptability and real-time responsiveness. 

The present work presents an improved 
methodology by combining MPC with AIPFC, 
facilitating predictive and adaptive management of 
power flows. The CFPSO method is employed to 
ascertain optimal generation setpoints, which are 
subsequently modified by MPC. This hybrid technique 
enhances system stability, decreases fuel expenses, and 
more efficiently mitigates power losses. In addition to 
our previous research, we compared the present work 
with recent studies. These studies, although innovative, 
lack the hybrid predictive control approach proposed 
in this paper and show relatively higher operational 
costs and losses under increased loading conditions. In 
order to provide an illustration of the performance 

enhancements, the following summary table is 
presented. 

The data presented in Table 5 indicates that the 
proposed method results in the most favorable fuel cost 
and optimal congestion relief as load conditions 
increase. Furthermore, the implementation of MPC 
offers a control mechanism that is absent in both 
previous and current approaches. 

Figure 12 presents a comparison of congestion 
management techniques, focusing on two essential 
factors: fuel cost during standard load conditions and 
the effectiveness of congestion mitigation in a 20 % 
overload scenario. The figure illustrates the fuel cost (in 
$/h) associated with each methodology, with lower 
values signifying enhanced economic efficiency. The 
figure represents the levels of congestion mitigation, 
where higher values signify improved effectiveness in 
reducing congestion during overloaded scenarios. 

The proposed MPC-AIPFC with CFPSO approach 
demonstrates exceptional performance by achieving 
the lowest fuel cost of $798.81/h, while also providing 
the highest level of congestion mitigation. This 
highlights its effectiveness in both cost efficiency and 
system reliability, even in demanding circumstances. 
Conversely, approaches such as GA with IPFC (GA-

Table 4. 
Optimal values for the IEEE-30-bus system under 20 % loading 
condition. 

Control Variables 
20 % Loading Condition 

NR CFPSO-
AIPFC 

MPC-
AIPFC 

Real power 
generation (pu) 

𝑃𝑃𝐺𝐺1 1.9721 1.9999 1.8949 

𝑃𝑃𝐺𝐺2 0.7 0.5707 0.6376 

𝑃𝑃𝐺𝐺3 0.2553 0.35 0.35 

𝑃𝑃𝐺𝐺4 0.1559 0.1796 0.202 

𝑃𝑃𝐺𝐺5 0.2985 0.2423 0.2561 

𝑃𝑃𝐺𝐺6 0.1514 0.1708 0.12 

Generator 
voltages (pu) 

𝑉𝑉𝐺𝐺1 1.05 1.1 1.05 

𝑉𝑉𝐺𝐺2 1.045 1.0878 0.9501 

𝑉𝑉𝐺𝐺3 1.01 1.0681 0.95 

𝑉𝑉𝐺𝐺4 1.05 1.1 1.1 

𝑉𝑉𝐺𝐺5 1.01 1.0581 0.95 

𝑉𝑉𝐺𝐺6 1.05 1.1 1.1 

Losses (pu) 0.1324 0.1125 0.0599 

Cost ($/h) 1026.46 1012.20 997.3751 
 

 
Figure 10. Power analysis under 20 % loading condition. 

 
Figure 11. Summary of line flows of overloaded lines under 
overloading use. 
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IPFC), PSO with IPFC (PSO-IPFC), and fuzzy-IPFC 
exhibit diminished efficacy in congestion control and 
increased fuel expenses. The deep reinforcement 
learning (DRL)-control approach demonstrates a 
commendable equilibrium between fuel expenses and 
congestion alleviation; however, it does not quite 
measure up to the proposed method. This figure 
underscores the effectiveness and reliability of the 
MPC-AIPFC with the CFPSO method in enhancing 
both the economic and operational dimensions of 
power transmission systems. 

IV. Conclusion 

This study illustrates the efficacy of combining the 
AIPFC with AI and ML methodologies to manage 
congestion in power transmission systems. The 
proposed MPC-AIPFC framework, enhanced by a 
CFPSO algorithm, demonstrates superior performance 
in fuel cost reduction, loss minimization, and 
congestion alleviation, as evidenced by comprehensive 
modeling and simulations utilizing the IEEE 30-bus 
system. The proposed approach demonstrates superior 
performance relative to existing methods, including 
GA-IPFC and PSO-IPFC, achieving the lowest fuel cost 

of $798.81/h and the minimum power loss of 0.0855 pu. 
Moreover, while traditional methods provided only 
limited congestion mitigation, the proposed solution 
achieves comprehensive congestion mitigation across 
various overloaded conditions and uniquely exhibits 
high dynamic control capability, highlighting its 
adaptability in real-time situations. The performance 
metrics indicate a notable improvement in operational 
efficiency, adaptability, and grid reliability. The 
framework enhances grid resilience and facilitates the 
transition to intelligent power systems through the 
application of AI/ML for real-time congestion 
prediction and control, along with the integration of 
optimization-driven AIPFC operation. The significant 
enhancements in economic and technical parameters 
confirm the transformative potential of this 
methodology in contemporary congestion 
management. The findings provide a solid basis for 
future investigations into emerging technologies, 
advanced multi-objective optimization, and the design 
of robust and secure systems. This work addresses 
significant challenges in transmission system operation 
and contributes to the advancement of cost-effective, 
sustainable, and intelligent energy infrastructures. 

Table 5. 
Comparative analysis of congestion management approaches. 

Methodology Fuel cost normal load  
$/h) 

Total losses  
(pu) 

Congestion mitigation under 20 % 
overload 

Dynamic control 
capability 

GA-IPFC [34] 805.92 0.094 Partial No 

PSO-IPFC [30] 803.14 0.091 Partial No 

CFPSO-IPFC [35] 799.90 0.089 Moderate No 

Fuzzy-IPFC [36] 802.17 0.090 Moderate Limited 

DRL-control [37] 799.20 0.087 Good Moderate 

Proposed MPC-AIPFC with 
CFPSO 

798.81 0.0855 High High 

 

 
Figure 12. Comparative analysis of fuel cost and congestion mitigation performance. 
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