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Abstract 

Using lithium-ion (Li-ion) batteries exceeding their useful lifetime may be dangerous for users, and hence, developing an 
accurate prediction system for batteries that remain useful for life is necessary. Many deep learning models, such as gated 
recurrent units and long short-term memory (LSTM), have been proposed for that purpose and have shown good results. 
However, their performance when dealing with noisy data degrades significantly. This may hamper their implementations for 
the real world since battery data are prone to noise. In this paper, we develop a robust prediction model in a noisy environment 
for predicting the remaining useful life (RUL) of Li-ion batteries. We propose a denoising autoencoder (DAE) utilized to remove 
noise from the data. The DAE is built with convolutional layers instead of traditional feed-forward networks here. We combine 
DAE with LSTM as the predictor. The proposed framework is evaluated using artificially corrupted battery data provided by 
National Aeronautics and Space Administration (NASA). The results reveal that our proposed method improves robustness 
when data contain various types of noise. A comparative study using the traditional approach has also been conducted. Our 
evaluation shows that convolutional layers are more effective than the traditional approach and that the original composition of 
the DAE was built using traditional feed-forward networks. DAE with convolutional layers has the best average performance 
with MSE of 0.61 and is the most consistent model. 

Keywords: denoising autoencoder (DAE); lithium-ion (Li-ion) battery; neural network; remaining useful life (RUL); system 
robustness. 
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I. Introduction 

Lithium-ion (Li-ion) batteries are used in many 
electric devices, such as electric vehicles, smartphones, 
laptops, and power tools. They are popular due to their 
lightweight design, compact size, high energy density, 
rechargeability, and relatively long cycle life. However, 
using Li-ion batteries exceeding their useful life period 
is not recommended since it may lead to system 
malfunctions and even severe accidents. The 
unscheduled maintenance can result in a shorter 
battery lifespan and the need for more frequent 
replacements. Therefore, it is crucial to develop an 
accurate prediction system for the battery's remaining 
useful life (RUL) to ensure the service life of the battery 
and the safety of the application. One indicator of the 
age of these batteries is the discharge capacity. When 
this capacity decreases to 70 % - 80 % of the initial 
capacity, it signifies the end-of-life (EoL). So, the 
capacity prediction value can be used for assessing RUL 
[1]. 

Numerous studies for RUL prediction have been 
reported in the literature. We can group the approaches 
for RUL predictions into two. They are model-based 
approaches and data-driven approaches. Model-based 
approaches involve predicting the health condition of a 
system by building physical models. Since the system 
degradation process has stochastic behavior, these 
approaches can effectively predict battery deterioration. 
Markov process [2], the Wiener process [3], and 
Gaussian mixtures [4] are several examples of this 
category. However, these methods assume a stationary 
process for the data. Unfortunately, the battery data are 
non-stationary. To overcome this, various non-linear 
filters, such as particle filter (PF) or Kalman filter (KF) 
[5][6] are used instead. However, model-based 
approaches rely on in-depth understanding and 
domain expertise to develop suitable models for a 
specific battery. They usually have poor generalization 
capability to other systems, making them less practical 
to develop. 

For data-driven approaches, the degradation 
process is modeled from past data. These approaches 
do not require explicit physical models; instead, they 
develop the model based on generic models that would 
be optimized to fit the data by optimizing the model's 
parameters and hyperparameters. When enough data 
are available, data-driven methods can be modified for 
many systems without very deep, pre-existing 
knowledge about the systems. For this, various machine 
learning methods, including deep learning [7], support 
vector regression (SVR) [8], and autoregressive moving 
average models (ARIMA) [9], are several popular 
machine learning techniques used in data-driven 

approaches. Recently, deep learning has received 
increasing attention in the RUL prediction of Li-ion 
batteries because of its ability to model non-linearities. 
Various architectures, such as convolution neural 
network (CNN) [10], long short-term memory (LSTM) 
[11][12], bidirectional LSTM (BiLSTM) [13], gated 
recurrent units (GRU) [14][15], and Transformers [16] 
have shown good performance for RUL prediction. 
Despite its popularity, one significant drawback still 
exists: producing a well-trained RUL predictor relies 
heavily on a large quantity of data. In other words, if the 
data selection is not sufficiently representative, the 
prediction performance can be highly unsatisfactory. 

In addition to the quantity of the data, their quality 
is also essential. Usually, deep learning models are 
trained with clean data, so the distortions are minimal. 
Unfortunately, data in real environments usually 
contains distortions from noises and measurement 
errors. Therefore, there may be a mismatch between 
training and testing conditions, making the models 
prone to wrong predictions when used with noisy data 
and degrading their performance. The Li-ion battery 
itself has inherent characteristics of being non-linear, 
complex, and subject to dynamic changes; thus, the 
degradation curve typically follows non-linear and 
non-stationary patterns. Furthermore, data collected in 
a real environment often encounter missing values. 
Therefore, many deep learning models fail to achieve 
satisfactory performance [17][18]. 

To minimize this effect, a data preprocessing 
technique is required to enhance data quality. Some 
studies have implemented denoising filters, such as 
particle filters [5], to the data before applying the 
machine learning models. In [19], a hybrid filtering 
method combining unscented Kalman filter (UKF) 
with kernel adaptive filter (KAF)-based model is 
proposed to produce a more robust and reliable 
prediction model. A hybrid of denoising-prediction 
with empirical mode decomposition (EMD) is 
proposed in [20]. Complete ensemble empirical mode 
decomposition with adaptive noise (CEEMDAN) is 
used in front of LSTM classifiers in [21]. 

Deep learning can also be employed for noise 
reduction. One of them is the denoising autoencoder 
(DAE). In [22], a method combining DAE and GRU 
estimates the battery's state of charge (SoC). The DAE 
was utilized to achieve a robust SoC estimation by 
introducing noise during the network training process, 
which helps in extracting valuable feature data from 
corrupted input data. Moreover, in [23], a combined 
stacked DAE and feed-forward networks is proposed 
for temperature forecasting and electric power 
consumption. DAE for noise suppression in processing 
seismic data is proposed in [24]. DAE was initially 
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trained in a supervised manner using synthetic data, 
and then the pre-trained model was applied to denoise 
the field seismic data in an unsupervised manner. A 
sequence-to-sequence mapping based on the LSTM 
model for robust SoC estimation that employed DAE is 
proposed in [25]. A two-stage pretraining approach is 
adopted to improve the feature learning capability and 
make it robust against variable sampling frequency. In 
addition, DAE has been widely adopted in speech data 
[26] and time-series data [22][23][24]. 

In this paper, we proposed DAE for noise reduction 
of battery data. Here, we use convolutional layers 
instead of feed-forward layers for DAE to reduce the 
computational load and storage. We employ LSTM on 
top of DAE as a predictor. In this paper, we denote our 
hybrid architectures as DAE-LSTM. The contributions 
of this paper are summarized as follows. The proposed 
method uses the DAE to reduce noise in the data. For 
practical application, the RUL prediction system 
should be robust against noise. To our knowledge, very 
few studies employ DAE-LSTM for battery data. The 
proposed framework is evaluated using four artificially 
corrupted battery data provided by National 
Aeronautics and Space Administration (NASA). The 
experimental results show that the proposed DAE 
improves robustness when data contain various types 
of noise. A comparative study using a traditional 
approach named CEEMDAN was conducted. 
Specifically, we explore various configurations of DAE 
from the depth and the types of networks. Both feed-
forward networks-based DAE and convolutional layer-
based DAE are investigated. While initially intended 
for image data, we found that convolutional layer-based 
DAE is generally better than the original DAE. It is also 
generally better than CEEMDAN [21], which is 
employed with LSTM. 

The remainder of this paper is organized as follows. 
Section II introduces the network architecture of the 
proposed method. Section II also describes the battery 
datasets, the process of adding noise, and the 
performance evaluation criteria. Section III gives the 

DAE's estimation performance and compares RUL 
prediction results with other methods. Finally, the 
concluding remarks are presented in Section IV. 

II. Materials and Methods 

A. Denoising autoencoder 

An autoencoder is a neural network that 
compresses data using the encoder and reconstructs the 
data with the decoder components. The encoder maps 
the input features into a reduced representation vector 
to find their latent variables, while the decoder 
reconstructs the output features back into the original 
size. DAE is a variant of autoencoder that aims to learn 
robust data representation [27]. It is done by mapping 
the distorted data with their clean ones. So, DAE is 
trained to produce a denoised version of data given 
corrupted input [28]. 

As in the autoencoder, DAE consists of two 
components as well. They are encoder and decoder 
networks. Figure 1 shows the architecture of DAE. The 
original input 𝑥𝑥 is first corrupted with noise. After that, 
the corrupted input 𝑥𝑥�  is converted using the encoder 
network 𝑓𝑓(𝑥𝑥�) = 𝜎𝜎(𝑊𝑊𝑥𝑥� + 𝑏𝑏)  into a hidden 
representation 𝑧𝑧, where 𝜎𝜎(∙) is a non-linear activation 
function. 𝑊𝑊 is a weight matrix, and 𝑏𝑏 is a bias vector, 
which are the parameters of the network. Then, the 
resulting representation 𝑧𝑧 is converted back using the 
decoder network 𝑔𝑔(𝑧𝑧) = 𝜎𝜎(𝑊𝑊𝑧𝑧 + 𝑏𝑏) in an attempt to 
reconstruct the denoised version of the corrupted data 
�́�𝑥 . The decoder network mirrors the structure of the 
encoder network but in reverse order. DAE is trained 
by minimizing the error between the clean input 𝑥𝑥 and 
its reconstructed input �́�𝑥 . In such a manner, DAE 
learns to eliminate undesirable noise from the data. 

B. Proposed method 

The proposed robust battery RUL prediction 
comprises two parts: DAE as the denoising model and 
LSTM as the prediction model. Here, we use DAE as 
preprocessing to eliminate noise from the data. DAE is 

 
Figure 1. Architecture of DAE. 
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designed to take corrupted data as input and is trained 
to generate a prediction of the uncorrupted data as its 
output. For the prediction model, we use LSTM. The 
overview of our proposed system is depicted in Figure 2. 

The proposed DAE is defined as follows. First, the 
original input is corrupted with noise. There are several 
ways to corrupt the input, such as adding Gaussian 
noise to the entire signal or only part of the signal or 
setting a desired proportion of the input values to zero 
at random. After that, the corrupted data are passed 
through the DAE network as the input layer. Secondly, 
the encoder network converts the corrupted input into 
a latent representation. The output size of the encoder 
is set to be smaller than the input size. We applied more 
than one non-linear encoding stage. Then, the decoder 
network reconstructs the output data given by hidden 
representation. The size of the hidden representation is 
converted back to the original input size. For example, 
in the encoding stage, we also applied more than one 
non-linear decoding stage. So, the decoder output is a 
denoised version of corrupted data that would be the 
input for the RUL prediction model. The output is the 
same size as the original input. When calculating the 
mean square error (MSE) as a loss function, the output 
is compared with the original clean input. 

In this study, we employed two types of network 
architecture to build DAE. The first uses a fully 
connected network (FC), and the second uses a 
convolutional neural network (CNN). Here, we denote 
DAE for the first and CNNDAE for the latter. We 
consider using CNN as they are capable of modeling 
local relations between data. So, for battery data, CNN 
would emphasize data near time indices more. So, we 
expect CNN to learn effectively the trend pattern in the 
time series data. Other studies have also indicated 
similar observations. In addition to the network types, 
we also explore the depth of the networks. It is known 
that deeper networks enable better learning of more 
complex relationships [29]. We investigate DAE and 
CNNDAE architecture with different levels of depth of 
the hidden layer. For DAE, FC layers are adopted in the 
encoder and decoder networks. Meanwhile, CNNDAE 
comprises one-dimensional strided convolutional 
layers in the encoder and decoder networks. We denote 
DAE-1, DAE-2, and DAE-3 for the DAE model and 

CNNDAE-1, CNNDAE-2, and CNNDAE-3 for the 
CNNDAE model to indicate the number of hidden 
layers from one to three for each encoder and decoder. 
The detailed architectures of the proposed method are 
shown in Table 1. Feed-forward networks or fully 
connected networks are denoted as Dense in Table 1. 

C. LSTM predictor 

We applied the LSTM network for the prediction 
model. LSTM has gained extensive use in battery RUL 
prediction systems due to its ability to effectively 
capture long-term dependencies in time series data 
[30][31]. A common LSTM unit is composed of a cell 
and three gates. The gates are an input gate, an output 
gate, and a forget gate. Each gate has a distinctive task 
in controlling the flow of information into and out of 
the cell state. The prediction model consists of a single 
LSTM layer comprising 32 hidden units, followed by 
two FC layers. The detailed architecture of the predictor 
is shown in Table 2. This LSTM predictor architecture 
is used for all the proposed denoising methods. 

D. Experimental data 

The battery data set provided by NASA's Prognostic 
Center of Excellence (PCoE) is adopted to evaluate the 
reliability of the proposed method. We focus on four 
batteries designated as B5, B6, B7, and B18. These 
batteries underwent cycling until their capacity 
degraded to 70 % of their initial capacity. The cycling 
experiments were tested at room temperature and 
involved three operational profiles: charge, discharge, 
and impedance. Under the discharge measurement 
profile, the capacity degradation process for each 
battery is illustrated in Figure 3. The starting capacity 
of these four batteries is 1.86 Ah, 2.04 Ah, 1.89 Ah, and 
1.86 Ah, respectively. Despite minor variations in their 
cyclic discharge conditions, their rated capacity is 
considered to be 2 Ah. Thus, the failure threshold is set 
to 1.4 Ah when the batteries drop 30 % of their rated 
capacity. 

It is important to emphasize that the NASA battery 
dataset is collected under tightly controlled laboratory 
conditions. Thus, it is contaminated with minimal 
noise. In order to simulate the real working conditions, 
we introduced artificial noise to the original capacity 

 
Figure 2. Architecture of the proposed system. 
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data. In realistic usage, batteries are usually used in an 
environment with variability, and their degradation 
behavior may be affected by fluctuations and 
measurement inaccuracies. Therefore, we introduced 
two types of noise: additive Gaussian noise and 
masking noise. The noise function is defined as in 
equation (1), 

𝑁𝑁(𝑥𝑥) = �𝑥𝑥 + 𝒩𝒩(𝜇𝜇,𝜎𝜎2)�.∗ 𝐵𝐵(𝑛𝑛,𝑝𝑝) (1) 

where 𝑁𝑁(𝑥𝑥) is the noisy version of the original battery 
data 𝑥𝑥 of size 𝑛𝑛. 𝑁𝑁(∙) is Gaussian noise sampled from 
Normal distribution with mean and variance settings. 
𝐵𝐵(∙)  is masking noise sampled from Binomial 
distribution with probability 𝑝𝑝 of being zero (masked). 

Table 1. 
Architectures of the proposed DAE. 

Model Sub-network Layer (configurations) Output size # Params 

DAE-1 Encoder InputLayer 20 × 1 0 

Dense (10, Tanh) 10 × 1 210 

Decoder Dense (20, Linear) 20 × 1 220 

DAE-2 Encoder InputLayer 20 × 1 0 

Dense (10, Tanh) 10 × 1 210 

Dense (5, Tanh) 5 × 1 55 

Decoder Dense (10, Tanh) 10 × 1 60 

Dense (20, Linear) 20 × 1 220 

DAE-3 Encoder InputLayer 20 × 1 0 

Dense (10, Tanh) 10 × 1 210 

Dense (5, Tanh) 5 × 1 55 

Dense (1, Tanh) 1 × 1 6 

Decoder Dense (5, Tanh) 5 × 1 10 

Dense (10, Tanh) 10 × 1 60 

Dense (20, Linear) 20 × 1 220 

CNNDAE-1 Encoder InputLayer 20 × 1 0 

Conv1D (Tanh, Filter=10, Kernel=1) 20 × 10 20 

MaxPooling1D (Pool size=2) 10 × 10 0 

Decoder UpSampling1D (Size=2) 20 × 10 0 

Conv1D (Linear, Filter=1, Kernel=11) 20 × 1 111 

CNNDAE-2 Encoder InputLayer 20 × 1 0 

Conv1D (Tanh, Filter=5, Kernel=1) 20 × 5 10 

Maxpooling1D (Pool size=2) 10 × 5 0 

Conv1D (Tanh, Filter=10, Kernel=3) 10 × 10 160 

Maxpooling1D (Pool size=2) 5 × 10 0 

Decoder UpSampling1D (Size=2) 10 × 10 0 

Conv1D (Tanh, Filter=5, Kernel=1) 10 × 5 55 

UpSampling1D (Size=2) 20 × 5 0 

Conv1D (Linear, Filter=1, Kernel=3) 20 × 1 16 

CNNDAE-3 Encoder InputLayer 20 × 1 0 

Conv1D (Tanh, Filter=5, Kernel=1) 20 × 5 10 

Maxpooling1D (Pool size=2) 10 × 5 0 

Conv1D (Tanh, Filter=10, Kernel=3) 10 × 10 160 

Maxpooling1D (Pool size=2) 5 × 10 0 

Conv1D (Tanh, Filter=5, Kernel=1) 5 × 5 55 

Decoder UpSampling1D (Size=2) 10 × 5 0 

Conv1D (Tanh, Filter=10, Kernel=1) 10 × 10 60 

UpSampling1D (Size=2) 20 × 10 0 

Conv1D (Tanh, Filter=5, Kernel=3) 20 × 5 155 

Conv1D (Linear, Filter=1, Kernel=1) 20 × 1 6 
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The operator .∗  indicates an element-wise 
multiplication. In this experiment, we implement three 
scenarios: 

• Gaussian noise only, where the probability of 
being masked is 0. 

• Masking noise only, where Gaussian variance is 0 
• Mixture noise. 

Noise is introduced into the original capacity data 
to measure the robustness of the battery RUL 
prediction system. The resulting corrupted data, 
denoted as 𝑁𝑁(𝑥𝑥) , is subsequently used in both the 
training and testing phases of the system. For training 
data, we used Gaussian noise with zero-mean and 
variance 𝜎𝜎2 = [0.01,0.05,0.1] , and masking noise 
percentage 𝑝𝑝 = [0.0,0.02,0.04,0.1] . For test data, we 
utilized noises equivalent to noises in the training data 
with different parameter settings: Gaussian noise with 
zero-mean and variance 𝜎𝜎2 = [0.0,0.01,0.05,0.1], and 
masking noise with 𝑝𝑝 = 0.03. In addition, we added 
Gaussian noise with variance 𝜎𝜎2 = [0.05,0.1,0.2,0.5] 
to part of the signal by 2 % in the test data. Figure 4 
shows some examples of each generated artificial noisy 
data of battery B18. 

In this experiment, we adopted the leave-one-out 
cross-validation technique, where one battery is 

designated as the test data, and the remaining three 
batteries serve as the training data. This process is 
repeated four times for each test set; the results shown 
are the average of these experiments. B5, B6, and B7 
have similar degradation patterns and the same 
number of cycles; thus, we have chosen to display the 
graphical experimental results of batteries B5 and B18 
only. 

E. Experimental setup 

For training the DAE, the hyperparameters are 
configured as follows. The entire model is trained with 
a sequence length of 20 and a 50 % overlap, with 50 
epochs and a batch size of 8. During testing, there is no 
overlap in the sequence length. We used the Tanh 
activation function, and for optimization, we used the 
Adam optimizer with a learning rate of 10−3 . The 
detailed configurations of the proposed DAE are shown 
in Table 1. All the proposed DAE models are trained 
and tested using corrupted data with different noise 
parameter settings, as discussed in Section II.D. 

The hyperparameters are set as follows to train the 
LSTM predictor. We used the Adam optimizer with a 
learning rate of 10−3. We set the training epochs to 100, 
the batch size to 50, and the sequence length to 5. At 

 
Figure 3. Capacity degradation over the discharging cycle. 

Table 2. 
Architecture of the LSTM predictor. 

Layer Output size # Params 

InputLayer 5 × 1 0 

LSTM 32 4352 

Dense 32 1056 

Dense 1 33 
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first, the predictor is trained using clean data. Then, the 
trained model is tested using noisy data to examine its 
robustness. We used MSE as a loss function and 
evaluation metric, which is calculated in equation (2), 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ (𝑥𝑥𝑖𝑖 − �́�𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  (2) 

where 𝑥𝑥𝑖𝑖 and �́�𝑥𝑖𝑖 are the actual and the predicted value 
of the sample 𝑖𝑖, respectively. 

III. Results and Discussions 

A. Verification for the DAE model 

We initiated our investigation by assessing the 
effectiveness of the DAE model. For each DAE and 
CNNDAE, the initial experiments were carried out 
with different layers depth, notated as DAE-1, DAE-2, 
DAE-3 for the DAE model, and CNNDAE-1, 
CNNDAE-2, CNNDAE-3 for CNNDAE model. The 
MSE of the average cross-validation results is presented 
in Table 3. It appears that models with only one layer, 
such as DAE-1 and CNNDAE-1, may be insufficient to 
achieve optimal performance in learning. Table 3 
shows that both DAE-1 and CNNDAE-1 have higher 

average error values compared to their multi-layer 
counterparts, indicating they perform worse overall. 
This suggests that one-layer models might lack the 
complexity and capacity needed to effectively learn and 
generalize from the data. On the other hand, models 
with more layers, such as CNNDAE-2 and CNNDAE-
3, demonstrate better performance. A robust denoising 
model is achieved using three layers of encoder and 
decoder networks, and CNNDAE-3 performs the best 
model. The capacity estimation results of DAE-2, DAE-
3, CNNDAE-2, and CNNDAE-3 of batteries B5 and 
B18 are shown in Figure 5. From the results shown in 
Figures 5(a), Figure 5(e) and Figure 5(d), Figure 5(h), 
when there is no additional noise and slight Gaussian 
noise, we found that both DAE and CNNDAE can 
accurately predict the capacity degradation trend. 
However, in more considerable Gaussian noise, as in 
Figure 5(b) and Figure 5(f), the capacity estimated by 
DAE fluctuates significantly, similarly when there is a 
presence of mixture noise as in Figure 5(c) and Figure 
5(g). As shown in Table 3, the MSE results from the 
CNNDAE model consistently outperformed those 
from the DAE model, which suggests that employing 

 
Figure 4. Analysis of original and noisy data: (a) original data without noise; (b) data with Gaussian noise, 𝜎𝜎2 = 0.05; (c) data with mixture noise 
comprising Gaussian noise with 𝜎𝜎2 = 0.01 and masking noise with 𝑝𝑝 = 0.03; and (d) data with partial Gaussian noise at 2 % and 𝜎𝜎2 = 0.05. 

Table 3. 
MSE (mAh) of the average of cross-validation results for capacity estimation. 

Model No noise Gaussian Masking Mixture Partial Gaussian Average 

DAE-1 4.32 4.21 11.86 12.10 4.65 7.43 

DAE-2 2.95 3.01 11.23 11.40 3.42 6.40 

DAE-3 2.63 2.56 11.83 12.14 3.27 6.49 

CNNDAE-1 5.26 6.06 6.04 6.35 6.38 6.02 

CNNDAE-2 1.01 1.56 1.55 2.01 1.49 1.52 

CNNDAE-3 0.36 0.92 0.42 0.93 1.06 0.74 
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CNNDAE for data preprocessing leads to more 
accurate predictions. This is consistent with prior 
research indicating that convolution layers are often 
more effective for capturing sequential dependencies in 
data [32][33]. 

B. RUL prediction results 

To further assess the effectiveness of the DAE model, 
the RUL prediction at a single starting point is 
conducted. In this experiment, we predict the RUL 
starts at 60 cycles. We also implemented the 
CEEMDAN signal analysis method as a comparison. 
The results for RUL prediction are summarized in 
Table 4, where we also included predictions without the 

denoising process, notated as “None” for comparison. 
As indicated in Table 4, when there is no noise present, 
the LSTM predictor can achieve accurate RUL 
prediction without the denoising process. The same 
holds for CEEMDAN, which also performs well in a 
noise-free environment. When the capacity data is 
contaminated with Gaussian noise, the performance of 
CEEMDAN is still comparable with CNNDAE-3. The 
MSE for CEEMDAN is 0.74, while for CNNDAE-3 is 
0.64. This might be because CEEMDAN adopted 
Gaussian white noise in its denoising process. However, 
the performance drops significantly when masking 
noise is introduced. In this condition, the use of the 
DAE proves to be more effective than CEEMDAN. 

 
Figure 5. Capacity estimation of batteries B5 and B18 with different noise types: (a) battery B5 with no noise; (b) battery B5 with Gaussian noise, 
𝜎𝜎2 = 0.05; (c) battery B5 with mixture noise, Gaussian noise with 𝜎𝜎2 = 0.01 and masking noise with 𝑝𝑝 = 0.03; (d) battery B5 with partial 
Gaussian noise, 2 % with 𝜎𝜎2 = 0.05; (e) battery B18 with no noise; (f) battery B18 with Gaussian noise, 𝜎𝜎2 = 0.05; (g) battery B18 with mixture 
noise, Gaussian noise with 𝜎𝜎2 = 0.01 and masking noise with 𝑝𝑝 = 0.03; and (h) battery B18 with partial Gaussian noise, 2 % with 𝜎𝜎2 = 0.05. 
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Specifically, CNNDAE-3 stands out as the best 
performance among the methods evaluated. 
CNNDAE-3 consistently produces accurate and robust 
predictions compared to the others. The error rate of 

CNNDAE-3 is consistently below 1 mAh across all 
noise conditions. Even in the presence of masking noise, 
this predictor still ensures high prediction accuracy. 
The prediction results are also plotted in Figure 6, 

Table 4. 
MSE (mAh) of the average of cross-validation results for capacity prediction starts at 60 cycles. 

Model No Noise Gaussian Masking Mixture Partial Gaussian Average 

None 0.38 0.96 7.32 8.10 1.53 3.66 

CEEMDAN 0.37 0.74 62.71 16.29 1.90 16.40 

DAE-1 3.18 3.19 4.71 5.27 3.70 4.01 

DAE-2 1.89 2.11 4.69 5.13 2.52 3.27 

DAE-3 1.51 1.65 5.23 5.94 2.04 3.27 

CNNDAE-1 2.14 3.34 2.12 2.91 3.25 2.75 

CNNDAE-2 0.61 0.82 1.11 1.40 0.91 0.97 

CNNDAE-3 0.38 0.64 0.37 0.82 0.85 0.61 
 

 
Figure 6. Capacity prediction starting at 60 cycles for batteries B5 and B18 with different noise types: (a) B5 with no noise; (b) B5 with Gaussian 
noise, 𝜎𝜎2 = 0.05; (c) B5 with mixture noise, Gaussian noise with 𝜎𝜎2 = 0.01 and masking noise with 𝑝𝑝 = 0.03; (d) B5 with partial Gaussian noise 
at 2 % and 𝜎𝜎2 = 0.05; (e) B18 with no noise; (f) B18 with Gaussian noise, 𝜎𝜎2 = 0.05; (g) B18 with mixture noise, Gaussian noise with 𝜎𝜎2 = 0.01 
and masking noise with 𝑝𝑝 = 0.03; and (h) B18 with partial Gaussian noise at 2 % and 𝜎𝜎2 = 0.05. 
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illustrating that CNNDAE-3 produces predictions that 
closely match the actual capacity values. 

Finally, we investigate the EoL error of battery B18. 
The EoL is defined as the battery capacity exceeding the 
failure threshold. The failure threshold is set at 1.4 Ah, 
as done in [34], when the measured capacity reaches 
70 % of the rated capacity. The EoL point is placed 
where the capacity and the failure threshold intersect, 
specifically at the last point of the intersection instead 
of the first one. In this case, the actual EoL of battery 
B18 is at the 110th cycle. Table 5 presents the results of 
EoL prediction and the associated errors for battery B18. 
The table illustrates that using DAE techniques (i.e. 
DAE and CNNDAE) to eliminate noise leads to reliable 
predictions, whereas comparative methods result in 
higher prediction errors. There is a possibility to 
produce inaccurate predictions when using an LSTM 
predictor without a denoising process or with 
CEEMDAN in a noisy environment. 

IV. Conclusion 

This paper proposes that DAE-LSTM build an 
accurate and robust RUL prediction in a noisy 
environment. Our approach involves using DAE to 
remove noise from the data and then utilizing an LSTM 
predictor to generate RUL predictions. We conducted 
experiments on NASA's Li-ion battery dataset to 
examine the effectiveness of the proposed method, 
where we intentionally introduced various types of 
artificial noise to the original capacity data. The results 
indicate that the proposed CNNDAE can effectively 

eliminate noise from the corrupted data and obtain 
reliable RUL prediction compared to CEEMDAN. 
CNNDAE has the best average performance with an 
MSE of 0.61 and is the most consistent model. This 
characteristic has the potential for practical application 
that demands high robustness. However, it is vital to 
recognize the limitations of this study for future 
improvements that DAE and LSTM predictors are 
implemented as separate tasks, and consequently, the 
relationship between the two tasks is not considered. 
Additionally, the methods are currently evaluated on 
artificially generated noisy data. In the future, 
exploration of real noisy data is needed to evaluate the 
effectiveness of DAE. Investigation on different types of 
noise, such as electrochemical noise, which is common 
for Li-ion battery, is also in our interest. While DAE can 
only learn about the latent representation of the data, 
using a variational autoencoder to learn about the 
latent distribution of the data may also improve the 
robustness of RUL prediction. 
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