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Abstract 

Ornamental plant farmers face various challenges due to climate change and environmental stress that significantly affect 
plant health and growth. This research overcomes these challenges by developing an intelligent watering system that uses 
internet of things (IoT) technology and decision trees (DTs) algorithms to optimize the use of planting land by ensuring plants 
grow in the most optimal conditions, both in terms of water and nutrients, and increase land productivity. The system is built 
by integrating various sensors to monitor soil moisture, air humidity, temperature, and light intensity in real-time. The collected 
data is used to automate watering schedules and provide recommendations on suitable plant species based on the soil nutrient 
content of nitrogen (N), phosphorus (P), and potassium (K). The use of the DTs algorithm helps in analyzing the data from the 
sensors and providing recommendations on the most suitable plants for the land. The smart watering system was tested in three 
zones, each simulating a different watering scenario, and successfully maintained optimal conditions for plant growth in each 
zone. The machine learning (ML) model with the DTs algorithm can predict the right type of ornamental plants based on the 
existing land conditions in three watering zones, with an accuracy of 89 %, 90 %, and 91 %, respectively. Furthermore, farmers 
can follow these recommendations to minimize damage and death of plants so that the level of productivity of the land becomes 
optimal. 

Keywords: decision tree; precision agriculture; internet of things (IoT). 

 
 

I. Introduction 

Ornamental plant farmers face many challenges, 
mainly due to climate change and environmental stress 
that are increasingly impacting plant health and growth. 
One of the challenges faced is fluctuations in 

temperature, light intensity, and water availability, 
which greatly affect plant development and 
productivity [1]. Improper watering and fertilization 
can cause health problems and even death in plants, 
especially in Indonesia, which often experiences a 
delayed rainy season due to the impact of climate 
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change resulting from the El-Nino phenomenon [2][3]. 
Not knowing how to read soil conditions accurately can 
result in overwatering. In addition, the level of nutrient 
availability and pH in the soil can affect growth, thus 
requiring manual monitoring and adjustment of soil 
conditions by farmers [4]. 

The emerging internet of things (IoT) technology 
offers a promising solution to this challenge by 
enabling automatic and precise control over the 
growing environment. IoT systems can integrate 
various sensors to monitor soil moisture, air humidity, 
temperature, and light intensity in real-time, providing 
accurate data to ensure optimal conditions for plant 
growth [5][6]. These systems can automate watering 
and fertilization schedules based on real-time data, 
reducing the risk of over-watering or under-watering 
and ensuring that plants receive the right amount of 
nutrients. The presence of machine learning (ML) 
technology can also help predict early plant stress, 
optimize plant spacing, and predict image-based 
growth [7][8][9]. Overall, integrated IoT and ML can 
help farmers optimize crop production. 

However, from the aspect of optimizing the 
availability of planting land, farmers also need to 
optimize production by determining the most suitable 
crops for cultivation on their limited planting land by 
considering the level of macronutrients such as 
nitrogen (N), phosphorus (P), and potassium (K) in the 
soil. Soil nutrient management is essential to maximize 
yield. For example, maize production in African 
smallholder agroecosystems often faces nutrient 
limitations, especially nitrogen (N) and potassium (K), 
which are critical for achieving high grain yields [10]. 
This research focuses on optimizing planting land by 
monitoring nutrients by utilizing sensors to read soil 
conditions and ML algorithms to predict plant seeds 
that match the available soil characteristics. Real-time 
soil condition data read by the sensors is 
communicated to the server that has been integrated 
with the ML model. Data is communicated using 
message queueing telemetry transport (MQTT) 
protocol and the ML training model is built by applying 
the decision trees (DTs) algorithm. 

II. Materials and Methods 

A. Smart watering monitoring system 

The system is built using a series of components or 
devices that work together in an integrated manner to 
achieve specific goals such as measuring and analyzing 
nutrient content in the soil in real-time, automatically 
watering it, and providing recommendations. Such 
capabilities are very important in precision agriculture. 

The system consists of several main components, 
namely the soil sensor, data processing unit, 
communication module, and user interface [11]. Soil 
sensors are placed in the soil to measure various 
parameters such as nitrogen (N), phosphorus (P), 
potassium (K) levels, soil moisture, pH, and 
temperature [12]. The data collected by the soil sensor 
is forwarded to the data processing unit, in this case, a 
microprocessor or microcontroller [13]. The 
communication module serves to transmit the data that 
the sensors have collected for processing to the server 
[14][15]. This module can use various communication 
technologies such as Wi-Fi, Bluetooth, or cellular 
networks depending on the needs and field conditions 
[16][17]. The user interface is a component that allows 
users to monitor soil conditions in real-time [18][19]. 
This interface can be a mobile or web application that 
displays data in an easy-to-understand graphical form 
[20][21] to provide recommendations for crop types 
and watering times based on data analysis. It then sends 
notifications if certain nutrient deficiencies are found. 

B. Optimization of cropping land 

To achieve the goal of optimizing planting land, in 
this research the system is able to recommend the 
selection of seeds that are suitable for the available soil 
conditions. The goal can be obtained by classifying 
suitable plant seeds that will grow well on the available 
land based on soil nutrients nitrogen (N), phosphorus 
(P), and potassium (K) in real-time. Decision trees 
(DTs) algorithms are a very popular and effective 
technique in ML, as they are easy to understand, require 
little data preparation, and can handle both numerical 
and categorical data [22]. 

DTs is a decision support tool by analogizing a tree 
represented in graph form. The branching of the trunk 
on the tree is a decision rule, which then the leaves are 
the results of a decision. The analogy of trunks and 
leaves in the graph theory of this algorithm is called 
internal nodes and leaf nodes [23]. Figure 1 shows that 
the DTs algorithm used in this research will give results 
when the soil nutrients meet the values corresponding 
to the classification of each ornamental plant species. 

1) Dataset 

The dataset in this study was obtained through 
measurements on ornamental plants, including 
Orchidaceae, Aglonema, and Monstera Adansonii, 
with a span of three months and measured weekly. The 
parameters measured were soil nutrients nitrogen (N), 
phosphorus (P), potassium (K), pH and soil moisture, 
shown in Table 1. 
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2) Decision tree modeling steps 

The steps in Figure 2 are the flow to create a 
Decision Trees model, starting from collecting datasets 
in the planting field. After that, data pre-processing is 
carried out by dividing the dataset into training data 
and test data. 

The training results will produce a model that can 
predict the suitable type of ornamental plants. The 
model is evaluated using an accuracy metric and will be 
repeated until it gets the model with the best accuracy. 
Finally, the DTs model is built and ready for integration. 

C. System architecture design 

As described in Figure 3, the flow of system 
architecture for the prototype in this study starts from 
data about soil conditions in plants read by sensors and 
then sent to sensor nodes, which then sensor data that 
has been received by sensor nodes will be forwarded to 
the HiveMQ website with the MQTT protocol. Sensor 
data from HiveMQ will be forwarded to several 
resources. If the data from the sensor has a value related 
to machine learning, the data from HiveMQ will be 
forwarded to the machine learning server to be 
predicted using the DTs model. Then, the prediction 
results will be forwarded back to HiveMQ and 
forwarded again to Node-RED to display the prediction 
results to the User Interface (UI) on the monitoring 
website. If the data from the sensor has values related to 
plant watering, the data from HiveMQ will be 
forwarded to the master node to water the plants if they 
meet certain conditions depending on the values 
obtained from the sensor, and HiveMQ will also 
forward the data to Node-RED to display the values 
from the sensor to the UI on the monitoring website. In 

addition to the sensor node, the master node also sends 
data in the form of watering time, watering duration, 
and estimated watering time to HiveMQ, which then 
the data will be forwarded to Node-RED to be displayed 
on the UI of the monitoring website. 

 

Figure 1. DTs algorithm. 

 

Figure 2. Flowchart for the DTs’ model. 
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D. Hardware design 

Hardware design consists of two parts, namely the 
sensor node and the master node. The sensor node is 
designed to know the soil conditions that will be read 
by the sensor capacitive soil, DHT11, and raindrop, 
while the master node is designed to be able to water 
according to soil conditions. The soil conditions are 
taken through the sensor node data. The design of the 

sensor node and master node is presented in Figure 3 
and Figure 4. 

As presented in Figure 4, the sensor node design 
requires one NodeMCU, two DHT11, one capacitive 
soil, and one battery. Based on this design, the sensor 
node can read soil moisture from the capacitive soil 
sensor, temperature from the DHT11 sensor, and 
macronutrient levels (NPK) in the soil from the DHT11 

Table 1. 
Dataset. 

Date 
Nitrogen (N) 

(mg/L) 
Phosphorus (P) 

(mg/L) 
Potassium (K) 

(mg/L) 
pH Soil moisture 

(%) 
Plant 

01-01-2023 10.61 14.24 15.99 6.66 38.78 Aglonema 

08-01-2023 19.26 13.64 25.43 6.18 37.90 Aglonema 

15-01-2023 15.98 13.67 27.77 6.74 31.96 Aglonema 

22-01-2023 13.98 16.08 11.39 6.05 38.44 Aglonema 

29-01-2023 7.34 20.50 28.23 7.36 21.77 Aglonema 

05-02-2023 7.34 18.64 15.12 6.39 23.92 Aglonema 

12-02-2023 5.87 15.82 11.95 6.99 20.90 Aglonema 

19-02-2023 17.99 22.24 38.47 6.47 26.51 Aglonema 

26-02-2023 14.02 12.79 38.97 6.78 27.77 Aglonema 

05-03-2023 15.62 15.84 34.25 6.82 25.43 Aglonema 

12-03-2023 5.31 17.33 19.14 6.28 36.57 Aglonema 

19-03-2023 19.55 19.12 12.93 7.45 27.14 Aglonema 

26-03-2023 17.49 25.70 30.53 7.16 25.62 Aglonema 

01-01-2023 13.14 17.17 31.40 7.36 23.73 Monstera Adansonii 

08-01-2023 7.11 12.32 32.82 6.37 37.85 Monstera Adansonii 

15-01-2023 17.03 27.26 26.84 6.62 30.79 Monstera Adansonii 

22-01-2023 6.12 22.47 33.13 7.13 36.15 Monstera Adansonii 

29-01-2023 19.80 16.62 24.81 6.34 37.92 Monstera Adansonii 

05-02-2023 16.58 11.27 25.68 6.12 26.36 Monstera Adansonii 

12-02-2023 7.98 16.22 22.83 6.43 22.20 Monstera Adansonii 

19-02-2023 5.08 16.50 10.76 6.24 24.56 Monstera Adansonii 

26-02-2023 17.23 24.59 13.24 7.39 28.54 Monstera Adansonii 

05-03-2023 15.60 22.75 10.94 7.21 36.36 Monstera Adansonii 

12-03-2023 15.94 27.74 29.09 6.95 37.21 Monstera Adansonii 

19-03-2023 16.57 19.44 19.43 7.31 20.14 Monstera Adansonii 

26-03-2023 6.11 12.39 25.26 7.21 30.21 Monstera Adansonii 

01-01-2023 11.26 16.02 30.16 6.89 38.49 Orchidaceae 

08-01-2023 8.33 15.70 32.85 7.02 37.55 Orchidaceae 

15-01-2023 6.80 10.74 17.13 6.02 25.16 Orchidaceae 

22-01-2023 10.06 22.19 31.85 6.77 33.20 Orchidaceae 

29-01-2023 19.14 20.05 21.03 6.34 36.34 Orchidaceae 

05-02-2023 9.85 11.03 28.97 6.97 31.10 Orchidaceae 

12-02-2023 12.78 15.57 29.01 6.26 30.59 Orchidaceae 

19-02-2023 15.55 28.17 26.07 7.04 4.84 Orchidaceae 

26-02-2023 10.45 14.79 12.71 6.58 21.86 Orchidaceae 

05-03-2023 19.58 12.90 35.06 7.41 37.94 Orchidaceae 

12-03-2023 19.44 19.79 19.62 6.21 38.01 Orchidaceae 

19-03-2023 8.78 29.71 15.60 6.51 32.66 Orchidaceae 

26-03-2023 12.46 14.84 11.22 6.17 26.78 Orchidaceae 
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sensor that is plugged into the ground. The reading 
results from the sensor will be sent to the NodeMCU. 

As presented in Figure 5, the master node design 
requires one NodeMCU, one 4-channel relay module, 

 
Figure 3. System architecture flowchart. 

 
Figure 4. Design of sensor nodes. 

 

Figure 5. Design of master node. 
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and three solenoids. The relay and solenoid will be 
connected to the AC voltage. Then the three solenoids 
will be connected to the pump and to the sprinkler via 
a small pipe in order to water the plants. 

E. Software design 

Software design is divided into four parts: software 
design for sensor nodes, master nodes, machine 
learning, and monitoring app. Sensor node and master 
node software were developed using C++. Meanwhile, 
machine learning software was developed using python 
and the monitoring app was built using Node-RED. An 
outline of the software design is presented in Figure 6. 

III. Results and Discussions 

A. Accuracy score 

The DTs model has been built through a training 
and testing process. The process was carried out several 
times, and it was found that the portion of the training 
and test dataset division had an effect on the resulted 
accuracy level [24]. The results shown in Figure 7 show 
that the evaluation metrics measured in the forms of 
accuracy, precision, recall, and F1-score increase as the 
portion of the training dataset increases. The 90:10 
portion is the best choice in this case as it produces a 
value of 0.91. 

 

Figure 6. Software design flowchart. 
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Although the accuracy value is good, modeling with 
the DTs algorithm can have an over-fitting problem 
[25]. Nevertheless, this research has limitation to 
overcome over-fitting, which usually can be done in 
either two ways: Pre-pruning or post-pruning 

B. Three watering zones 

The smart watering prototype has been 
implemented into three watering zones called zone A, 
zone B, and zone C, as shown in Figure 8. 

Zone A is set to simulate the automatic watering of 
fields with scheduled rules. Zone B and zone C simulate 
automatic watering when the soil moisture parameter 
value is below the threshold value. What distinguishes 
zone C from the other zones is that it is also used to 
simulate the prediction process to recommend the type 
of plants that are suitable for the soil nutrient value of 
the land. The sensors in each zone were tested for three 
days, and the data is in Table 2. 

C. Integration of the DTs model with the 
prototype 

The integration between smart watering has been 
successful, shown by real-time test data in zone C that 
sends nutrient values to the DTs model to obtain 
recommendations for plants suitable for planting in 
zone C soil. The DTs model deployment process is 
carried out by creating a publish-subscribe paradigm 
application programmable interface (API) that serves 
plant recommendation predictions [26]. 

System testing was conducted by subscribing 
nutrient values from plants via HiveMQ and the 
recommendation was published back to HiveMQ to be 
obtained and shown at the Node-RED monitoring app. 
Data was obtained for three days and can be seen in 
Table 3, Table 4, Table 5. Based on Table 3, Table 4, and 
Table 5, it can be seen that the initial data of the new 
recommendation is constant after several predictions, 

 
Figure 7. Result of training. 

 

Figure 8. Prototype system. 
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the initial recommendation value of Orchidaceae. 
However, it then changed to Monstera Adansonii and 

then constant to Aglonema. This is influenced by the 
condition of soil moisture in zone C, which is starting 

Table 2. 
Sensor testing results (22/09/2023). 

 Temperature (°C) Moisture (%) Humidity (%) 

Time Zone A Zone B Zone C Zone A Zone B Zone C Zone A Zone B Zone C 

14:20:01 25 33 26 - 47 72 95 20 95 

14:39:43 25 33 27 - 59 73 95 33 95 

14:49:25 27 33 27 - 59 72 95 27 95 

15:05:30 27 33 28 - 59 72 95 20 95 

15:19:16 28 33 28 - 59 72 95 48 95 

15:34:38 27 33 29 - 58 72 95 20 95 

15:49:21 -1 33 30 - 58 72 75 20 98 

16:05:18 -19 32 31 - 58 72 20 20 61 

16:19:22 -18 32 31 - 58 72 20 20 51 

16:35:34 -16 31 31 - 58 71 20 20 48 

16:49:20 -17 32 30 - 58 72 20 20 48 
 
Table 3. 
System testing results (22/09/2023). 

No N (mg/L) P (mg/L) K (mg/L) pH Rainfall (rF) Recommendation 

1 22 75 87 7 103 Orchidaceae 

2 2 100 162 7 89 Orchidaceae 

3 2 100 162 7 89 Orchidaceae 

4 40 110 27 7 37 Monstera Adansonii 

5 40 75 35 7 26 Aglonema 

6 35 50 100 7 22 Aglonema 

7 57 115 122 7 20 Aglonema 

8 55 22 25 7 17 Aglonema 

9 67 80 97 7 13 Aglonema 

10 50 17 77 7 9 Aglonema 

11 77 27 137 7 9 Aglonema 
 
Table 4. 
Machine learning testing results (25/09/2023). 

No N (mg/L) P (mg/L) K (mg/L) pH Rainfall (rF) Recommendation 

1 63 105 163 7 7 Aglonema 

2 63 105 163 7 7 Aglonema 

3 42 36 52 7 6 Aglonema 

4 29 89 47 7 6 Aglonema 

5 79 34 79 7 8 Aglonema 

6 50 42 163 7 8 Aglonema 

7 10 121 134 7 14 Aglonema 

8 21 26 15 7 24 Aglonema 

9 13 102 134 7 23 Aglonema 

10 29 52 116 7 24 Aglonema 

11 29 52 116 7 24 Aglonema 

12 44 100 60 7 24 Aglonema 

13 13 36 92 7 22 Aglonema 

14 44 105 126 7 21 Aglonema 

15 44 105 126 7 21 Aglonema 

16 10 31 4 7 19 Aglonema 
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to be controlled into good conditions because it has 
experienced automatic watering when the value is less 
than the threshold. 

D. Data visualization on monitoring app 

The monitoring application is developed using 
Node-RED. Plant recommendations, humidity, and 
temperature values of each zone will change according 
to the real-time situation. Meanwhile, the watering 

status value will change when the plant moisture in 
zone B and zone C is below the threshold, while zone A 
will change once every four hours after automatic 
watering. The monitoring application also provides the 
last watering time and watering duration for each zone. 
An example can be seen on the Node-RED dashboard 
on the 1st data of September 26, 2023, as shown in 
Figure 9. 

Table 5. 
Machine learning testing results (26/09/2023). 

No N (mg/L) P (mg/L) K (mg/L) pH Rainfall (rF) Recommendation 

1 33 20 128 7 1 Aglonema 

2 11 67 19 7 1 Aglonema 

3 16 5 78 7 0 Aglonema 

4 42 39 129 7 2 Aglonema 

5 28 44 67 7 0 Aglonema 

6 84 11 104 7 0 Aglonema 

7 5 101 33 7 0 Aglonema 

8 76 93 121 7 0 Aglonema 

9 76 11 119 7 0 Aglonema 

10 19 133 57 7 0 Aglonema 

11 45 74 185 7 0 Aglonema 

12 68 119 168 7 0 Aglonema 

13 28 88 142 7 0 Aglonema 

14 22 82 17 7 0 Aglonema 

15 31 43 80 7 0 Aglonema 

16 83 132 154 7 0 Aglonema 

17 88 54 97 7 0 Aglonema 

18 2 45 28 7 0 Aglonema 

19 43 141 37 7 0 Aglonema 

 

 

Figure 9. Dashboard data 26/09/2023 (Node-RED). 
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IV. Conclusion 

Based on the results of the design and testing of the 
system, it can be concluded that machine learning 
based on the DTs algorithm has been implemented well 
in the IoT-based ornamental plant smart watering 
system. Tests on three watering zones show that the 
system can maintain optimal conditions for plant 
growth, reduce the risk of overwatering or 
underwatering, and ensure the plants receive the right 
amount of nutrients. The results show that the use of 
the DTs algorithm can predict the type of ornamental 
plants that are suitable based on soil nutrient content, 
with an accuracy of 89 %, 90 %, and 91 %, respectively. 
Farmers can follow the recommendations given to 
minimize damage and death of plants so that the level 
of productivity of the field becomes optimal. The 
accuracy value of the ML model with the DTs algorithm 
is influenced by the portion of the separation of the data 
set and test data. Although the accuracy value is good, 
this research has limitations in that it has not overcome 
overfitting that may occur. It is necessary to increase 
the number of training datasets with various types of 
plants. This study also did not measure the production 
yield compared to the land area, how many plants failed 
to harvest, and how many were successfully harvested 
on that land area, which should be measured during the 
harvest season. The implementation of the DTs 
algorithm in this smart watering system has great 
potential to improve agricultural efficiency and 
productivity, especially when climate change impacts 
rainfall patterns. The DTs algorithm can accurately 
analyze sensor data to provide optimal watering and 
crop selection recommendations. As such, this research 
makes a significant contribution to the field of 
Precision Agriculture, paving the way for further 
innovations in the use of machine learning for 
automated and intelligent management of ornamental 
plants. 
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