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Abstract

The stability analysis ofgC—DCbuck converter is a challenging problem due to the hybrid systems characteristic of its
dynamics. Such a challenge arises from the buck converter operation which depends upon the ON/OFF logical transitions of
its electronic switch component to correspondingly activate different continuous vector fields of the converter’'s temporal
dynamics. This paper presents a sum of squares (SOS) polynomial optimization approach for stability analysis of a hybrid
model of buck converter which explicitly takes into account the converter's electronic switching behavior. The proposed
method first transforms the converter's hybrid dynamics model into an equivalent polynomial differential algebraic equation
(DAE) model. An SOS programming algorithm is then proposed to computationally prove the stability of the obtained DAE
model using Lyapunov's stability concept. Based on simulation results, it was found that the proposed method requires only

8.5 seconds for proving the stability of a buck converter model. In contrast, ex

ive simulations based on numerical

integration scheme require 15.6 secondsto evaluatethe stability of the same model . These results thus show the effectiveness
of the proposed method as it can prove the converter stability in shorter computational times without requiring exhaustive

simulations usin merical integration.
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I. Ipggoduction

A DC-DC converter is an electronic device which
transfers electric power from a DC voltage source to
the loads [1]. Such a transfer is achieved through the
activation/inactivation of an electronic switch which
causes the electric power to be transmitted from the
source to power storage devices when the switch is
activated (ON) and then subsequently transferred
from the storage device to the load when the switch
is inactivated (OFF). The electronic switch is typically
made of transistor and/or diode while the power
storage devices usually consist of capacitor and/or
inductor. The result of these power transfer processes
is the converters output voltage whose value is
proportional to the ratio of the durations of the ON
and OFF states of theswitch [2]. In practice, there are
two types of converters that are used in electronic
applications, namely the step down (or buck) and
step up (boost) converters. For a given source voltage
value, the buck converter produces a lower output

voltage while the boost converter generates a higher
one. In this paper, our focus is to study and analyze
the dynamics of a buck converter due to its frequent
and widespread uses in household and industrial
electronic devices which range from simple motor
control [3] to the design of photovoltaic power
systems [4] and electric vehicles [5].

Based on its working principle, the buck converter
can be viewed and modeled as switched hybrid
systems (SHS) whose dynamics may switch/jump
from one discrete mode/state of operation into
another in accordance to the ON/OFF mode or state of
its switch [6][7].In particular, during the activation of
either ON or OFF mode, the converter state variables
(eg. aurrent or voltage) evolve continuously in time
according to the vector fields which define these
states trajectories. The hybrid characteristics of a
buck converter often give rise to nonlinear behaviors
that are complex and at times difficult to characterize
[8]. As aresult, much of prior analysis works on buck




converter dynamics were often done using its so-
called averaged model for which the switching
behaviors can simply be neglected [9]. While the use
of this averaged model has so far resulted in various
stability analysis and control synthesis methods, the
fact that the construction of such a model essentially
relies on the linearization/approximation methods
limits their applicability to relatively small
operational regions [10]. These suggest that more
works remain needed to better understand the hybrid
d ics of buck converters [11][12].

is paper proposes the use of a computational
method based on sum S0S programming techniques
[13] for analyzing the stability of a hybrid buck
converter model. In the proposed method, the
converter dynamics are first modeled as a two-mode
SHSin which the activation of each mode is triggered
by the ON/OFF state of the switch. The stability of the
obtained SHS model is analyzed using sufficient
stability conditions in the form of a dissipation
inequality [14]. An SOS program to find a Lyapunov
function which satisfies the formulated dissipation
inequality (thus certifies tla SHS stability) is then
formulated [15]. Numerical simulation results which
illustrate the effectiveness of the proposed
computational method are then presented.

II. Materials and Methods

A. System d iption and model

Consider the schematic of a DC-DC buck converter
in Figure 1 [1]. In this figure, |, is the voltage source
whose value needs to be decreased to meet the
desi utput voltage value at the resistor load R.
Both the inductor L and the capacitor C serve as
temporary power storage elements for the input
voltage from 1, before being subsequently
transferred to the load R as an output voltage. An
additional resistor r, as shown in the schematic is
added to describe parasitic electrical current/voltage
which may occurs in the converter circuitry. The
transfer of electrical power from the input 1 to the
output R which occurs in two subsequent modes is
controlled by the sequence of activation of the
electronic switches S, and S, as discussed below.

In the first mode (denoted as mode 0), switch S, is
activated (ON) while switch 5, isdeactivated (OFF).In
thiscase, the voltage source (1, ), the storage elements
(L and C) and theload (R) are connected and form two
electrical loops. To model thedynamicsin this mode,
define a vector of state variables x = [qclf which
consists of the current that passes through the
inductor L and the voltage across the capacitor C.
Using Kirchoff's laws, it can be shown that the
dynamics of the converters state variables satisfy the
following equation (1) [2].

#(t) = Apx(t) + Byu(t)
_[-n/C -1/L
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where u(t) = 1, has been defined as the system’s
input. In the second mode (denoted as mode 1),
switch S, is activated (ON) whereas switch §; is
deactivated (OFF). In this case, the voltage source (1)

is disconnected from both the power storage
components (L and C) and the load (R). This implies
that the two loops in mode 0 no longer indude I, as
their elements. As a result, the dynamics of the
converter's state variables in mode 1 is simply
governed by the following equation (2)

#(t) = Ax(t) + Byu(t)
_[-n/C -1/L
=l 1c  -1/mrel*® @
where B; = [0,0]" by the mode definition.
Based on the above two operational modes, the
buck converter dynamics may be modeled as an SHS
model of the form equation (3) [16]

x(t) = Agiyx(t) wul(t) )

where x(t) € ®? isthe vector of state variables, u(t) is
the (control) input and a(t): t — {0,1} is a switching
signal which controls the mode that should be
activated for a certain duration of time. It isthus clear
that the SHS equation (3) consists of two modes with
similar statevariablessuch that it reducesto equation
(1) if a(t) = 0 or simplifies to equation (2) when
a(t)=1. In practice, the value of «(t) is usually
regulated using a controller (e.g. pulse-width
modulator) which sets the ratio of thetime durations
of the ON/OFF states of each switch in term of a duty
ratio parameter [17].

The presence of the switching signal a(t) makes
the analysis of the converter dynamics in equation (3)
challenging. For instance, it is known that the overall
dynamics of equation (3) can be unstable even if its
subsystems are all stable. For this reason,
considerable research efforts have been given in the
last few decades to develop methods for analyzing
the stability of SHSequation (3) [18]. Qurrently, thg:#
are at least two main methods to do such analysisgge.
using common Lyapunov function (CLF) [19] and
multiple Lyapunov functions (MLF) [20] methods.
Although theoretical basis for these methods have
been established, their tractable computational
implementations remain relatively unexplored. Asin
the case of standard Lyapunov-based methods, this
lack of computational implementation has mainly
been caused by the difficulty in finding the
corresponding CLF or MLF [21]. This difficulty arises
due ta@sfhe fact that these methods essentially boil
down to a problem of finding a nonnegative function
that satisfies a set of nonlinear innJaIitie‘.‘s/equaIities
[22]. Finding such a function is known to be a
computationally hard problem because there
currently does not exist provable algorithms with
polynomial time complexity to solve it [2“

To address the above difficulty, this paper
proposes the use of SOS optimization techniques for
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igure 1. Theschematic of a DC-DC buck converter




analyzing the stability of the SHS equation (3). The
proposed method first transforms the hybrid
dynamics of the buck converter into an equivalent
polynomial differential algebraic equation (DAE)
model [24]. Using the obtained DAE, this paper adopts
a method from [14] to derive a dissipation inequality
which defines the stability conditions of the resulting
DAE form. Finally, an S90S programming approach
[25] for computing a Lyapunov function which
satisfies such an inequality is formulated.

B. DAE representation of switched hybrid systems

We next describe a method to construct an
equivalent DAE model to repreelt the SHS model
equation (3). Let R, and R" denote the sets of
nonnegative real numbers and an n-dimensional
Euclidean space, respectively. Consider a general SHS
model of the form equation (4),

() = forey (x(O), ult)) 4)

where x(t) e R" and u(t) € ®™ denote the state and
control vectors of the SHS, IBaectively. The function
a():[0,tp) » 0 €{0,1,-, q} is the switching signal
which is a piecewise constant function of time, and
fi(DER"xR™x R, - R" denotes a nonlinear
function of the system vector fields when mode i € @
isactive.

To define a DAE representation of equation (4),
one first constructs a (row) drift vector F(x,u)
consisting the SHSs vector fields for all modes as
'11 ation (5),

Fara= o) fiw) -~ fo(xuw) ®)

Next, let I' () be the quotient vector of the Lagrange
polynomial interpolation of F(x,u) in equation (5) of
the form equation (6),

(o):= [folo) fi(a) - £4(a)] (6)

in which each element of L(a) is defined in the
switching variable ¢ as equation (7)

=ne, e
tj(o) = n;zg G—0) (7)

The switching variable ¢ in the quotient vector
equation (6) isconstrained to take only integer values
using the following polynomial function constraint
equation (8),

D(0):=M_glo —j) =0 G)

In this regard, an equivalent representation of
equation (3)in the form of polynomial DAE model can
be constructed using F(x,u), I'(o), and D(g) in
equation (5), equation (6), and equation (8),
respectively as equation (9) [13].

() = F(x,u)l () (9)
0= D(o)
C. programming

SOSprogramming isa variant of convex relaxation
techniques in the context of polynomial optimization
methods. The main idea in S90S programming
methods is the reformulation of equality/inequality
constraints in the considered problem as S0S
polynomial conditions. Let Z, be the set of

nonnegative integers and consider a polynomial ring
R [x] with unknown variqesx € R" and real-valued
coefficients [26]. Recall that a polynomial function
V(x) € R [x] being an S0S polynomial implies that
V(x) is also a positive definite (PD) function (i.e.
V(x)=0 for all xe ). This implication in turn
allows one to recast the determination of whether a
polynomial function is SOS or not semidefinite
programming (SDP) problems. Specifically, a
polynomial function v (x) of degree 2d with d is
an S0Spolynomial if there exist a PD matrix Q. and a
vector of monomials ¥(x) of degree = d such that
V (x) can be decomposed as in equation (10) [27],

) =T (0)Qs¥(x) (10)

A key important point in equation (10) is that the
construction of such a decomposition may be
formulated and solved using SDP methods [28].
Spedfically, by specifying the vector of finite degree
monomials ¥(x), th construction of the
decomposition equation (10) boils down to thesearch
for a positive definitematrix @, for which the equality
equation (10) holds [29]. This means various
computational tools and solvers of semidefinite
programming problems can be used to compute such
a decomposition.

The decomposition in equation (10) forms the
basis for the formulation of an SOS program. For
instance, equationif10) can be used to simultaneously
(i) determine if a polynomial V(x) is PD and (ii)
compute a positive lower bound y > 0 for V(x) using
the SOSprogram in equation (11)

min y (11)
st. V(x) —yisSOS

1

Note that if the solution y in equation (11) isfeasible,
then the SOSproperty of V(x) guarantees that V(x) —
y = 0 holds, which thus impliesis a PD function that
is lower nded by the constanty > 0. Particularly,
uation (11) isa convex SDP problem as it searches
a constant y > 0 and a PD matrix @, such that
V() —y =T (x)Q.W(x) hon. As such, various well-
established computational tools in SDP methods can

used to solve problem equation (11) [30].

III. Results and Discussions
A. DAE representation of buck converter model

For the SHS model equation (2), the polynomial
DAE representation of the form (9) can be constructed
by noting that the system mode has such that. Thus,
the drift vector (5) for this caseis defined as F(x,u): =
[Apx(t)  Arx(8)].

On the other hand, the elements of the quotient
polynomial interpolation are defined as

-1
i=1 -1

1
(e —0)
1—a {(o)= =g
' 10 10

to(o) =

j=0 j=1
such that in addition, the polynomial function is
defined as D (s): = ]'[}=U(a' -pD=o(c—1).
As a result, an equivalent polynomial DAE
representation of the SHS equation (2) is defined as
equation (12)




x(t) = [Agx (t) + Bou(t)](1 — o) + A1x(t)o
= (Ag(1 — o)+ Ayo)x(t) + By(1
— aju(t)
0=c(c—1) (12)

B. Stability analysis of DAE system using
dissipation inequality

This section describes an S0S programming
formulation of a dissipation inequality which
describes the sufficient stability conditions for the
DAE representation equation (10) of the SHSequation
(3). In particular, this paper examines the use
Lyapunov’s stability analysis method for studying the
dynamics and stability of the DAE system in equation
(10). To in with, consider a general model of
nonlinear systems of the equation (13),

() = flx() + .g(x(t)ﬂ(t), x(0) = xo (13)

The uili X" = {x|f(x)+g(x)u=0} of
equationl{$) is said to be Lyapunov stable if there
exists a function V(x): " - R, which satisfies: (i)
V(x) = 0and (i) (% V)[f(x) + g(x)u(t)] < 0forall x €
R™ in which (FV) = (dV(x)/dx) [31]. For the DAE
system of the form eguation (10), Lyapunov stability
analysis method may still be used through its
reformulation in the form of a dissipation inequality.
In this case, the system equilibrium vector [x*, ¢]" for
a given u is defined as that for which conditions (i)
0 = [Agx" + Bou(T))(1 — ) + A,x" and (i) 0=a(o—
1) hold. The following theorem from [14] establishes
a sufficient stability condition for system equation
(12).

Theorem 1 ]: The equilibrium x* of the DAE
equation (4) is asymptotically stable if there exist a
function V(x):®" - R,, a scalar-valued function
Ax,0) >0 and a function I'(g) =0 such that the
following dissipation inequality holds around x*,

(7 V)[Apx + Bou](1 — &) + Ayx] < A(x, 0) (o) (14)

Theorem 1 essentially states that if a set of
functions {V(x), 1(x, o), I (&)} which satisfy inequality
equation (14) exist simultaneously, then the

equilibrium of DAE equation (12) is guaranteed to

asymptotically stable. Unfortunately, such a search is
known to be a computationally hard problem.
However, if V(x), A(x,0), and (o) are polynomial
functions, a tractable computation method for their
search is available using techniques from S0S
programming. Stability of SHS equation (12) can be
examined using SOS programming that corresponds
to theresult in Theorem 1.

C. SOS programming algorithm for stability of DAE
model

Proposition 1 formulates an SOS program based
on the result in Theorem 1. The main idea in this
algorithm formulation is to relax inequality
constraints equation (14) into S0S polynomial
constraints.

Proposition 1: The equilibrium{&F the SHS model in
equation (12) is asymptotically statis if there exist a
polynomial function V(x) € R [x] SOS polynomial
functions A(-) € R [x,¢] and I'(-) € R [¢] such that the

solution y > 0 of the SOS program (equation (15)
until equation (19) isfeasible.

min vy
st V(x)—vy is SOS (15)
2 () A(x, ) — (T V(L) is SOS (16)
Alx, ) is SOS (17)
I'(a) is SOS (18)
—I(o) is SOS (19)

Proof: Assume the solution of equation (9) is feasible.
Then there exists a constant y > 0 which satisfies
equation (15) - equation (19). Such a satisfaction thus
particularly implies the existence of fundions
A(x,0) = 0 an ) = 0. Moreover, the satisfaction of
equation (15) implies the existence of a PD function
V(x) =y > 0 with alower bound of y > 0. Finally, the
satisfaction of equation (16) implies A(x,0)"%(0) —
(VV)[Agx + Bou](1 — o) + A;x] = 0, which is
essentially the conditiq in equation (14). By
Theorem 1, we condude that the equilibrium of the
SHS equation (12) is asymptotically stable. The proof
is thus completed.

Algorithm 1 details a computational method for
the implementation of Proposition 1. Notice in this
algorithm that I'(o) = a(o — 1) is explicitly defined
even though it may also be defined as an unknown
polynomial function in variable ¢ that needs to be
searched simultaneously with V(x), ¥y and A(x,o)
during the optimization's iteration. This simply
means that the decision variables of the optimization
become larger. The explicit choice of I'(g) = (g — 1)
in Algorithm 1 may thus be viewed as a way to reduce
the computational load which otherwise may
increase very fast when I'(s) is left as decision
variable. Algorithm 1 can be implemented in SOS
programming tools in conjunction with SDP solvers
[32]. Section VD illustrates an implementation of
Algorithm 1inthe SHSmodel equation (4).

D. Simulation experiments

This section reports the simulation results of the
implementation of Algorithm 1 to analyze the
stability of the SHS model equation (4). In the
simulation, the model parameters of I, = 12 volt, R =
50k 2, v, =202510, L =033mH and C =120 uF were
used. The SHS model is assumed to operate with a
duty cycle of 0.5. Algorithm 1 is implemented in
M ATLAB [33] programming platforn‘nsing SOSTOOL
[27] and MOSEK [34] software tools under a Core-i7,
4.2 GHz PC with 16 GB RAM. For the SHS model
equation (4), Algorithm 1 was solved in 8.5 seconds
and gives a Lyapunov function V(x) of degree d, = 6
and an S90S function A(x,0) of degree d; = 6. The
existence of such funcions thus certify the
asymptotic stability of the SHSmodel in equation (10).
For comparison, simulation experiments were also
conducted for the dynamics of the SHS model in
equation (1) and equation (12) using a direct
numerical integration method, as well as the buck




Algorithm 1.
SOS program formulation in Proposition 1

505 Program for Stability Analysis of SHS Model equation

(4)

Input

Output: Polyncmial functicns V(x), AX)

¢ Matrices 4.4 and B in SHS model egquation (10)

and a lower bound

7

Initialization:
1. pefine the polynomial [(&)=o(l-a)

2. Set wu

to be a constant duty ratio input for the buck converter model

505 Program

— T
3. Define the vecteor of augmented decision wvariables X =[x, e7]

degree db" with unknown ceefficients ¢

wn

in which «

. o
. Construct a poelynomial function template V(x}:Lava CoX

is

. Construct a polynomial functien template 2{T}=Lﬂﬁ) cﬂTﬂ

of degree

a multi-index

of degree

degree d) with unknown coefficients ('ﬂ in which f is a multi-index

6. Define a positive constant y as the decision wariable in problem eguation (8)

-

. Declare the 3505 constraints (%b)-—(9f)

8. Solve the 503 program to find Vi(x), AT} and y

for the defined

Vix), AT) and [ia)

converter dynamics based on the physical circuit in
Figure 1.

The switching input signal is generated using a
pulse width modulator (PWM) generator with a
frequency of fpy s = 2K Hz. The measurable output of
the systemis assumed to be the output voltage across
R. The simulations were conducted using MATLAB
which is y integrated with SIMULINK and
SIM SCAPE. Figure 2 shows the block diagram of the
three buck converter models that are used in the
simulation.

For the assumed model parameter values,
simulations result of these models were obtained in
15.6 seconds which is longer than that required by

the SOS programming method. Asshown in Figure 3,
the simulation resultsindicate similar stable behavior
of the output voltages and reflect a resulting output
voltage of 6 volts for th volt input with 0.5 duty
cyde. This thus verifies the stability property of the
considered buck converter system as concluded by
the existence of solution to the SOS Programming
method in Algorithm 1. The main advantage of using
S90S Programming method is that it essentially
mimics the feature of Lyapunov's stability analysis
method whereby the stability of a system can be
inferred/conduded based on the existence of
Lyapunov function and without having to rely on
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Figure 2. MATLAB SIM ULINK/SIM SCAPE model used insimulation
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Figure 3. Output comparison of the state: (@) space; (b) DAE; and (c) physical modds
exhaustive simulation based on numerical of other polynomial optimization approaches such as

integration methods.

IV. Conclusion

This paper has presented a convex optimization
approach for the analysis of an equivalent SHS
representation of DC-DC buck converter model. The
proposed method first transforms the hybrid
dynamics of the buck converter into an equivalent
polynomial differential algebraic equation (DAE)
model. The method then formulates an S90S
programming algorithm for searching a Lyapunov
functions which satisfy a dissipation inequality
condition on the obtained DAE mo that is
sufficiently required to guarantee the asymptotic
stability of the equilibrium point of the SHS model.
Numerical simulation results show that the proposed
method can prove the stability of the system in a
relatively shorter computational time without relying
on exhaustive simulations of the systems’ dynamics.
Future works will extend the proposed approach to
synthesize stabilizing controller for the SHS method.
Other possible directions include the implementation

the method of moments for characterizing the
stability property of SHS models as well asanalyzing
more complex and nonlinear hybrid model of
switched hybrid power converters.
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