Optimizing bioethanol from sago dregs for Honai burner stoves: A case study in Papua

Johni Jonatan Numberi, Tiper Korneles Muwarberto Uniplaita, Agri Suwandi, Januar Parlaungan Siregar, Arifia Ekayuliana, Joni Joni, Pither Palamba, Marthen Liga

Abstract

Indonesia harbors considerable prospects for bioethanol fuel generation. Underscoring the imperative for establishing optimal fuel concentrations and appropriate burners to facilitate sustainable energy alternatives; this study endeavored to identify the optimal bioethanol concentration sourced from sago waste for application in Honai burners, evaluating the resultant flame output for domestic energy in Papuan custom houses. This analysis adopted an integration of pre-experimental frameworks along with experimental ones. In the early trial stage, concentrations of bioethanol were thoroughly examined concerning low heat value (LHV), specific gravity, viscosity, gas chromatography, and Fourier transform infrared (FTIR) analysis to identify the best fuel characteristics. Following this, the experimental phase assessed flame characteristics, encompassing temperature, fuel mass flow rate, and emissions from combustion gases within the Honai burner. Pre-experimental findings suggest that an 80 % bioethanol concentration is ideal for the Honai burner, displaying a viscosity of 1.03 cP, a density of 0.82 g·L⁻¹, a gas chromatography content of 61.04 %, an LHV of 16.166 MJ/kg, and a heat release rate of 140 kW·m⁻². The experimental phase indicates that a 14-hole burner oriented at a 45° angle yields optimal performance, achieving stable flame temperatures between 480 °C and 750 °C with a fuel flow rate of 60 mL·min⁻¹. Analysis of combustion gases indicates minimal emissions, with carbon monoxide (CO) registering at 0.01 %, carbon dioxide (CO₂) at 0.2 %, and hydrocarbons (HC) at 27 ppm. In summary, this study offers a feasible approach to addressing energy challenges, meeting demand, enhancing accessibility, ensuring availability, and promoting regional energy autonomy for Papuan households in remote locales through the utilization of bioethanol derived from sago dregs in Honai burner cooking devices.




Keywords


sago dregs; bioethanol; flame temperature; heat release; Honai burner; Papuan households

Full Text:

PDF


References


S. Mujiyanto and G. Tiess, “Secure energy supply in 2025: Indonesia’s need for an energy policy strategy,” Energy Policy, vol. 61, pp. 31–41, Oct. 2013.

A. S. Suntana, K. A. Vogt, E. C. Turnblom, and R. Upadhye, “Bio-methanol potential in Indonesia: Forest biomass as a source of bio-energy that reduces carbon emissions,” Applied Energy, vol. 86, pp. S215–S221, Nov. 2009.

Y. Yudiartono, J. Windarta, and A. Adiarso, “Sustainable long-term energy supply and demand: The gradual transition to a new and renewable energy system in Indonesia by 2050,” Int. J. Renew. Energy Dev., vol. 12, no. 2, pp. 419–429, Mar. 2023.

T. Numjuncharoen, S. Papong, P. Malakul, and T. Mungcharoen, “Life-cycle GHG emissions of cassava-based bioethanol production,” Energy Procedia, vol. 79, pp. 265–271, Nov. 2015.

S. Papong and P. Malakul, “Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand,” Bioresource Technology, vol. 101, no. 1, pp. S112–S118, Jan. 2010.

S. Soeprijanto, L. Qomariyah, A. Hamzah, and S. Altway, “Bioconversion of industrial cassava solid waste (onggok) to bioethanol using a saccharification and fermentation process,” Int. J. Renew. Energy Dev., vol. 11, no. 2, pp. 357–363, May 2022.

M. H. S. Ginting, Irvan, E. Misran, and S. Maulina, “Potential of durian, avocado and jackfruit seed as raw material of bioethanol: a review,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 801, no. 1, p. 012045, May 2020.

H. Rahman, A. Nehemia, and H. P. Astuti, “Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment,” Int. J. Renew. Energy Dev., vol. 12, no. 4, pp. 648–654, Jul. 2023.

Y. S. Chandrasiri, W. M. L. I. Weerasinghe, D. A. T. Madusanka, and P. M. Manage, “Waste-based second-generation bioethanol: A solution for future energy crisis,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 275–285, Feb. 2022.

M. Yasuda, Y. Ishii, and K. Ohta, “Napier grass (Pennisetum purpureum Schumach) as raw material for bioethanol production: Pretreatment, saccharification, and fermentation,” Biotechnol Bioproc E, vol. 19, no. 6, pp. 943–950, Nov. 2014.

D. S. Awg-Adeni, K. B. Bujang, M. A. Hassan, and S. Abd-Aziz, “Recovery of glucose from residual starch of sago hampas for bioethanol Production,” BioMed Research International, vol. 2013, pp. 1–8, 2013.

N. A. Bukhari, S. K. Loh, N. Abu Bakar, and M. Ismail, “Hydrolysis of residual starch from sago pith residue and its fermentation to bioethanol,” Sains Malaysiana, vol. 46, no. 8, pp. 1269–1278, Aug. 2017.

M. Vincent, B. R. Anak Senawi, E. Esut, N. Muhammad Nor, and D. S. Awang Adeni, “Sequential saccharification and simultaneous fermentation (SSSF) of sago hampas for the production of bioethanol,” Sains Malaysiana, vol. 44, no. 6, pp. 899–904, Jun. 2015.

M. Rijal, “Bioethanol from sago waste fermented by baker’s and tapai yeast as a renewable energy source,” Jan. 06, 2020, Developmental Biology.

I. M. K. Dhiputra and N. J. Jonatan, “The utilization of metroxylon sago dregs for eco-friendly bioethanol stove in Papua, Indonesia,” KEn, vol. 2, no. 2, p. 119, Dec. 2015.

B. Susanto et al., “Characterization of sago tree parts from Sentani, Papua, Indonesia for biomass energy utilization,” Heliyon, vol. 10, no. 1, p. e23993, Jan. 2024.

N. J. Jonatan, A. Ekayuliana, I. M. K. Diputra, and Y. S. Nugroho, “Analysis of the heat release rate of low-concentration bioethanol from sago waste,” International Journal of Technology, vol. 8, no. 3, p. 428, Apr. 2017.

F. H. Pendi, W.-J. Yan, H. Hussain, H. A. Roslan, and N. Julaihi, “Advances in sago palm research: A comprehensive review of recent findings,” Sains Malaysiana, vol. 52, no. 11, pp. 3045–3059, Nov. 2023.

D. Waluyo. (2024, Aug. 9). Indonesia.go.id - Lahan Sagu Terluas di Dunia, Peluang Ekonomi dan Ketahanan Pangan Indonesia. [Online] [Accessed: 03-July-2025].

J. Chen, X. Peng, Z. Yang, and J. Cheng, “Characteristics of liquid ethanol diffusion flames from mini tube nozzles,” Combustion and Flame, vol. 156, no. 2, pp. 460–466, Feb. 2009.

N. Oliverio, A. Stefanopoulou, L. Jiang, and H. Yilmaz, “Ethanol detection in flex-fuel direct injection engines using in-cylinder pressure measurements,” SAE Int. J. Fuels Lubr., vol. 2, no. 1, pp. 229–241, Apr. 2009.

S. Yousufuddin, “Combustion duration influence on hydrogen-ethanol dual fueled engine emissions: An experimental analysis,” J. Mechatron. Electr. Power Veh. Technol., vol. 9, no. 2, pp. 41–48, Dec. 2018.

W. Widiyanti, M. A. Mizar, C. A. Wicaksana, D. Nurhadi, and K. M. Moses, “Exhaust emissions analysis of gasoline motor fueled with corncob-based bioethanol and RON 90 fuel mixture,” J. Mechatron. Electr. Power Veh. Technol., vol. 10, no. 1, pp. 24–28, Dec. 2019.

M. Li, Y. Wang, H. Cheng, Y. Jiang, and C. Zhang, “Influence of nozzle structure on the combustion performance of a graphitic hydrogen-chlorine synthesis combustor,” Applied Thermal Engineering, vol. 219, p. 119603, Jan. 2023.

Muhaji and D. H. Sutjahjo, “The characteristics of bioethanol fuel made of vegetable raw materials,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 296, p. 012019, Jan. 2018.

J. Elias et al., “Thermocouple-based thermometry for laminar sooting flames: Implementation of a fast and simple methodology,” International Journal of Thermal Sciences, vol. 184, p. 107973, Feb. 2023.

V. Larnaudie, E. Rochón, M. D. Ferrari, and C. Lareo, “Energy evaluation of fuel bioethanol production from sweet sorghum using very high gravity (VHG) conditions,” Renewable Energy, vol. 88, pp. 280–287, Apr. 2016.

W. Braide, I. Kanu, U. Oranusi, and S. Adeleye, “Production of bioethanol from agricultural waste,” J. Fundam and Appl Sci., vol. 8, no. 2, p. 372, May 2016.

R. Mulyawan, R. Nurlaila, T. T. A. R. Ahmadi, M. Muhammad, N. Sylvia, and A. Muarif, “The effects of fermentation extent and acid concentration on bioethanol from HVS paper waste,” Equilibrium Journal of Chemical Engineering, vol. 7, no. 1, p. 53, May 2023.

R. Şener, M. Özdemi̇R, and M. Yangaz, “Effect of the geometrical parameters in a domestic burner with crescent flame channels for an optimal temperature distribution and thermal efficiency,” Journal of Thermal Engineering, vol. 5, no. 6, pp. 171–183, Oct. 2019.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Johni Jonatan Numberi, Tiper Korneles Muwarberto Uniplaita

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.