Design of switched reluctance motor as actuator in an end-effector-based wrist rehabilitation robot
Abstract
Keywords
Full Text:
PDFReferences
T. Vos et al., “Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019,” The Lancet, vol. 396, no. 10258, pp. 1204–1222, Oct. 2020, doi: 10.1016/S0140-6736(20)30925-9.
World Health Organization, Non-communicable diseases country profiles 2018. Geneva: World Health Organization, 2018. Accessed: Jul. 10, 2024. [Online]. Available: https://iris.who.int/handle/10665/274512.
World Stroke Day 2022. Geneva: World Health Organization, 29 October 2022. Accessed: Jul. 10, 2024. [Online]. Available: https://www.who.int/srilanka/news/detail/29-10-2022-world-stroke-day-2022.
“Corrigendum to: World Stroke Organization (WSO): Global Stroke Fact Sheet 2022,” International Journal of Stroke, vol. 17, no. 4, pp. 478–478, Apr. 2022, doi: 10.1177/17474930221080343.
L. Andriani, “Dominasi penyakit tidak menular dan pola makan yang tidak sehat,” 2020.
E. S. Lawrence et al., “Estimates of the Prevalence of Acute Stroke Impairments and Disability in a Multiethnic Population,” Stroke, vol. 32, no. 6, pp. 1279–1284, Jun. 2001, doi: 10.1161/01.STR.32.6.1279.
H. C. Persson, M. Alt Murphy, A. Danielsson, Å. Lundgren-Nilsson, and K. S. Sunnerhagen, “A cohort study investigating a simple, early assessment to predict upper extremity function after stroke - a part of the SALGOT study,” BMC Neurol, vol. 15, no. 1, p. 92, Dec. 2015, doi: 10.1186/s12883-015-0349-6.
V. Darak and S. Karthikbabu, “Lower limb motor function and hip muscle weakness in stroke survivors and their relationship with pelvic tilt, weight-bearing asymmetry, and gait speed: A cross-sectional study,” CJN, Jun. 2020, doi: 10.18502/ijnl.v19i1.3275.
S. Hussain, P. K. Jamwal, P. Van Vliet, and M. H. Ghayesh, “State-of-the-Art Robotic Devices for Wrist Rehabilitation: Design and Control Aspects,” IEEE Trans. Human-Mach. Syst., vol. 50, no. 5, pp. 361–372, Oct. 2020, doi: 10.1109/THMS.2020.2976905.
S. Tenberg et al., “Comparative Effectiveness of Upper Limb Exercise Interventions in Individuals With Stroke: A Network Meta-Analysis,” Stroke, vol. 54, no. 7, pp. 1839–1853, Jul. 2023, doi: 10.1161/STROKEAHA.123.043110.
MIT News website. Accessed: Jul 20, 2024. [Online]. Available: https://news.mit.edu/2010/stroke-therapy-0419.
T. Ridremont et al., “Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation,” Actuators, vol. 13, no. 5, p. 180, May 2024, doi: 10.3390/act13050180.
Y. Wang and Q. Xu, “Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation,” Sci Rep, vol. 11, no. 1, p. 1273, Jan. 2021, doi: 10.1038/s41598-020-80411-0.
M. Haghshenas-Jaryani, R. M. Patterson, N. Bugnariu, and M. B. J. Wijesundara, “A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation,” Journal of Hand Therapy, vol. 33, no. 2, pp. 198–208, Apr. 2020, doi: 10.1016/j.jht.2020.03.024.
F. Hussain, R. Goecke, and M. Mohammadian, “Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods,” Proc Inst Mech Eng H, vol. 235, no. 12, pp. 1375–1385, Dec. 2021, doi: 10.1177/09544119211032010.
M. A. Gull, S. Bai, and T. Bak, “A Review on Design of Upper Limb Exoskeletons,” Robotics, vol. 9, no. 1, p. 16, Mar. 2020, doi: 10.3390/robotics9010016.
A. Otten, C. Voort, A. Stienen, R. Aarts, E. Van Asseldonk, and H. Van Der Kooij, “LIMPACT:A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton,” IEEE/ASME Trans. Mechatron., vol. 20, no. 5, pp. 2285–2298, Oct. 2015, doi: 10.1109/TMECH.2014.2375272.
M. Tiboni, A. Borboni, F. Vérité, C. Bregoli, and C. Amici, “Sensors and Actuation Technologies in Exoskeletons: A Review,” Sensors, vol. 22, no. 3, p. 884, Jan. 2022, doi: 10.3390/s22030884.
A. J. Veale and S. Q. Xie, “Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies,” Medical Engineering & Physics, vol. 38, no. 4, pp. 317–325, Apr. 2016, doi: 10.1016/j.medengphy.2016.01.010.
S. Kumar et al., “Modular Design and Decentralized Control of the Recupera Exoskeleton for Stroke Rehabilitation,” Applied Sciences, vol. 9, no. 4, p. 626, Feb. 2019, doi: 10.3390/app9040626.
K. X. Khor et al., “Portable and Reconfigurable Wrist Robot Improves Hand Function for Post-Stroke Subjects,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 10, pp. 1864–1873, Oct. 2017, doi: 10.1109/TNSRE.2017.2692520.
E. Akdoğan, M. E. Aktan, A. T. Koru, M. Selçuk Arslan, M. Atlıhan, and B. Kuran, “Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: Performance analysis and clinical results,” Mechatronics, vol. 49, pp. 77–91, Feb. 2018, doi: 10.1016/j.mechatronics.2017.12.001.
D. Xu, M. Zhang, H. Xu, J. Fu, X. Li, and S. Q. Xie, “Interactive Compliance Control of a Wrist Rehabilitation Device (WR e D) with Enhanced Training Safety,” Journal of Healthcare Engineering, vol. 2019, pp. 1–10, Feb. 2019, doi: 10.1155/2019/6537848.
L. Zhang, S. Guo, and Q. Sun, “Development and Assist-As-Needed Control of an End-Effector Upper Limb Rehabilitation Robot,” Applied Sciences, vol. 10, no. 19, p. 6684, Sep. 2020, doi: 10.3390/app10196684.
A. Molaei, N. A. Foomany, M. Parsapour, and J. Dargahi, “A portable low-cost 3D-printed wrist rehabilitation robot: Design and development,” Mechanism and Machine Theory, vol. 171, p. 104719, May 2022, doi: 10.1016/j.mechmachtheory.2021.104719.
S. Han, K. Diao, and X. Sun, “Overview of multi-phase switched reluctance motor drives for electric vehicles,” Advances in Mechanical Engineering, vol. 13, no. 9, p. 16878140211045195, Sep. 2021, doi: 10.1177/16878140211045195.
S. Zheng, X. Zhu, Z. Xiang, L. Xu, L. Zhang, and C. H. T. Lee, “Technology trends, challenges, and opportunities of reduced-rare-earth PM motor for modern electric vehicles,” Green Energy and Intelligent Transportation, vol. 1, no. 1, p. 100012, Jun. 2022, doi: 10.1016/j.geits.2022.100012.
P. C.-K. Luk, H. A. Abdulrahem, and B. Xia, “Low-cost high-performance ferrite permanent magnet machines in EV applications: A comprehensive review,” eTransportation, vol. 6, p. 100080, Nov. 2020, doi: 10.1016/j.etran.2020.100080.
F. Kucuk and T. Nakamura, “Low‐Cost Permanent Magnet‐Assisted Switched Reluctance Motor for Adjustable Speed Drive Applications,” IEEJ Transactions Elec Engng, vol. 15, no. 8, pp. 1213–1218, Aug. 2020, doi: 10.1002/tee.23184.
S. Yang et al., “A novel wrist rehabilitation exoskeleton using 3D-printed multi-segment mechanism,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico: IEEE, Nov. 2021, pp. 4769–4772. doi: 10.1109/EMBC46164.2021.9630996.
Y. Lan et al., “Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends,” Energies, vol. 14, no. 8, p. 2079, Apr. 2021, doi: 10.3390/en14082079.
N. Nikafrooz, M. J. Mahjoob, and M. Ali Tofigh, “Design, Modeling, and Fabrication of a 3-DOF Wrist Rehabilitation Robot,” in 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), Tehran, Iran: IEEE, Oct. 2018, pp. 34–39. doi: 10.1109/ICRoM.2018.8657532.
A. U. Pehlivan, F. Sergi, A. Erwin, N. Yozbatiran, G. E. Francisco, and M. K. O’Malley, “Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury,” Robotica, vol. 32, no. 8, pp. 1415–1431, Dec. 2014, doi: 10.1017/S0263574714001490.
Morphopedics. Accessed: Jul 20, 2024. [Online]. Available: http://morphopedics.wikidot.com/dequervain-s-disease.
D. C. Meeker, Finite Element Method Magnetics, Version 4.2 (28Feb2018 Build), https://www.femm.info.
Krishnan, R. (2001). Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications (1st ed.). CRC Press.
Y. Zhang, L. Chen, Z. Wang, and E. Hou, “Speed Control of Switched Reluctance Motor Based on Regulation Region of Switching Angle,” Energies, vol. 15, no. 16, p. 5782, Aug. 2022, doi: 10.3390/en15165782.
Y. Lan et al., “Switched Reluctance Motors and Drive Systems for Electric Vehicle Powertrains: State of the Art Analysis and Future Trends,” Energies, vol. 14, no. 8, p. 2079, Apr. 2021, doi: 10.3390/en14082079.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Budi Azhari, Muhammad Fathul Hikmawan, Aditya Sukma Nugraha, Edwar Yazid, Catur Hilman Adritya H.B.B., Rahmat Rahmat, Mohamad Luthfi Ramadiansyah
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.