RHO–LSTM-based optimal scheduling at the motorcycle battery swapping station under battery heterogeneity
Abstract
This research proposes a mechanism that enables the battery swapping station (BSS) to provide battery swap services for multiple types of batteries, termed battery heterogeneity, utilized in electric motorcycles. The number of batteries for each type is established. The battery charging cost is calculated in real time, and the station's profit is maximized by optimizing battery swap scheduling. The issues are modeled as a mixed-integer non-linear problem (MINLP), then linearized as a mixed-integer linear problem (MILP), using the grid electricity price from the real-time pricing mechanism to calculate the battery's charging/discharging cost. Swap scheduling is optimized using the rolling horizon optimization (RHO) approach, which takes into account a variety of constraints. These constraints include battery type, battery SoC, arrival time of the electric motorcycle, grid electricity pricing at time t, and battery power utilization. The long-short term memory (LSTM) predicts the electric motorcycles' arrival time at t+1 based on prior data. The results show that optimization scheduling generates a higher overall profit per day than unscheduled operation. Profit by the RHO-LSTM method is 23.77 % greater than by the RHO-Polynomial method and 0.26 % greater than by unscheduled operation. Furthermore, the number of batteries provided by the RHO-LSTM method is 40 % greater than by the RHO-polynomial method.
Keywords
Full Text:
PDFReferences
R. Agustina, Yuniaristanto, W. Sutopo, “Factors Influencing Electric Motorcycle Adoption in Indonesia: Comprehensive Psychological, Situational, and Contextual Perspectives”, World Electric Vehicle Journal, 16(2) 106 (2025). https://doi.org/10.3390/wevj16020106.
A. Shalaby, M. F. Shaaban, M. Mokhtar, H. H. Zeineldin, E. F. El-Saadany, “A Dynamic Optimal Battery Swapping Mechanism for Electric Vehicles Using an LSTM-Based Rolling Horizon Approach”, IEEE Transactions on Intelligent Transportation Systems, 23 (9) 15218-15232 (2022). doi:10.1109/TITS.2021.3138892.
X. Zhang, Y. Cao, L. Peng, N. Ahmad, and L. Xu, “Towards efficient battery swapping service operation under battery heterogeneity,” IEEE Trans. Veh. Technol., 69 (6) 6107-6118 (2020). doi:10.1109/TVT.2020.2989195.
H. Wu, “A Survey of Battery Swapping Stations for Electric Vehicles: Operation Modes and Decision Scenarios”, IEEE Transactions on Intelligent Transportation Systems, 23 (8) 10163-10185 (2022). doi:10.1109/TITS.2021.3125861.
R.K. Fachri, R.A. Khayr, M. Z. Romdlony, A. Muharam, Amin, “State of the Art of Battery Swap Station Management System in Indonesia: An IoT-Based Prototype”, Proceedings of the 4th International Conference on Electronics, Biomedical Engineering, and Health Informatics, 493-503 (Surabaya, 2023). doi: 10.1007/978-981-97-1463-6_34.
M. I. S. Putra, M. Hisjam, W. A. Jauhari, “An Optimization Model for Electric Motorcycle Battery Swapping Station in Indonesia: A Case Study”, E3S Web of Conferences, 465 02042, (Lombok, 2023). https://doi.org/10.1051/e3sconf/202346502042
M. Cai, M. Pipattanasomporn, and S. Rahman, “Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques”, Applied Energy, 236 1078-1088 (2019). doi:10.1016/j.apenergy.2018.12.042.
Zhou, H., Zhou, Y., Zhang, H., Hu, J., Nordströmd, L., Yang, G, “LSTM Network-Based Method for Flexibility Prediction of Aggregated Electric Vehicles in Smart Grid”, Proceedings of 2020 International Top-Level Forum on Engineering Science and Technology Development Strategy and The 5th PURPLE MOUNTAIN FORUM (PMF2020), 718 962-974 (Nanjing, 2020). doi: 10.1007/978-981-15-9746-6_72
S. Bouktif, A. Fiaz, A. Ouni, M. Adel Serhani, “Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches”, Energies, 11 (7) 1636 (2018). doi: 10.3390/en11071636.
S. Jawed, J. Grabocka, L. Schmidt-Thieme, “Self-supervised Learning for Semi-supervised Time Series Classification”, Advances in Knowledge Discovery and Data Mining. PAKDD 2020, 12084 499–511 (Singapore, 2020). doi: 10.1007/978-3-030-47426-3_39
J. Shanmuganathan, A. A. Victoire, G. Balraj, A. Victoire, “Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand”, Sustainability, 14 (6) 10207 (2022). doi: 10.3390/su141610207
M. Z. Romdlony, R. Khayr, A. Muharam, E.R. Priandana, Sudarmono Sasmono, Muhammad Ridho Rosa, Irwan Purnama, Amin Amin, Ridlho Khoirul Fachri, “LSTM-based forecasting on electric vehicles battery swapping demand: Addressing infrastructure challenge in Indonesia”, Journal of Mechatronics, Electrical Power, and Vehicular Technology, 14 (1) 72-79 (2023). doi: 10.14203/j.mev.2023.v14.72-79
A.K. Bohre, Y. Sawle, V. K. Jadoun, A. Agarwal, “Assessment of Techno-Socio-Economic Performances of Distribution Network with Optimal Planning of Multiple DGs”, EVERGREEN, 10 (2) 1106-1112 (2023). doi: 10.5109/6793670.
Y. Bai, Y. Zhu, “Adaptive Optimization Operation of Electric Vehicle Energy Replenishment Stations Considering the Degradation of Energy Storage Batteries”, Energies, 16 (13) 4879 (2023). doi: 10.3390/en16134879.
N. Xin, L. Chen, L. Ma, Y. Si, “A Rolling Horizon Optimization Framework for Resilient Restoration of Active Distribution Systems”, Energies, 15 (9) 3096 (2022). doi: 10.3390/en15093096.
W. Guo, B. Atasoy, W.B.V. Blokland, R. R. Negenborn, “A dynamic shipment matching problem in hinterland synchromodal transportation”, Decision Support Systems, 134 113289 (2020). doi: 10.1016/j.dss.2020.113289.
A. Bischi, L. Taccari, E. Martelli, E. Amaldi, G.o. Manzolini, P. Silva, S. Campanari, E. Macchi , “A rolling-horizon optimization algorithm for the long-term operational scheduling of cogeneration systems”, Energy, 184 73-90 (2019). doi: 10.1016/j.energy.2017.12.022.
J. Silvente, G.M. Kopanos, E.N. Pistikopoulos, A. Espuña, “A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids”, Applied Energy, 155 485-501 (2015). doi: 10.1016/j.apenergy.2015.05.090.
Q. Kang, J. B. Wang, M.C. Zhou, A. C. Ammari, “Centralized Charging Strategy and Scheduling Algorithm for Electric Vehicles Under a Battery Swapping Scenario”, IEEE Transactions on Intelligent transportation systems, 17 (3) 659-669 (2015). Doi: 10.1109/TITS.2015.2487323
Y. Li, Z. Yang, G. Li, Y. Mu, D. Zhao, C. Chen, B. Shen, “Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multistakeholder scenarios: a bi-level programming approach via real-time pricing”, Applied Energy, 232 54-68 (2018). doi: 10.1016/j.apenergy.2018.09.211
S. Esmaeili, A. Anvari-Moghaddam, S. Jadid, “Optimal Operation Scheduling of a Microgrid Incorporating Battery Swapping Stations”, IEEE Transactions on Power Systems, 34 (6) 5063 - 5072 (2019). doi: 10.1109/TPWRS.2019.2923027.
K. Šepetanc, H. Pandžić, “A Cluster-Based Operation Model of Aggregated Battery Swapping Stations”, IEEE Transactions on Power Systems, 35 (1) 249 – 260 (2020). doi: 10.1109/TPWRS.2019.2934017.
B. Sun, X. Sun, D.H.K. Tsang, W. Whitt, “Optimal battery purchasing and charging strategy at electric vehicle battery swap stations”, European Journal of Operational Research, 279 (2) 524-539 (2019). doi: 10.1016/j.ejor.2019.06.019
X. Geng, F. An, C. Wang, X He, “Battery Swapping Station Pricing Optimization Considering Market Clearing and Electric Vehicles’ Driving Demand”, Energies, 16 (8) 3373 (2023). doi: 0.3390/en16083373
Y. Liang, H. Cai, G. Zou, “Configuration and system operation for battery swapping stations in Beijing”, Energy, 214 118883 (2021). doi: 10.1016/j.energy.2020.118883
Y. Zhang, L. Yao, L. Hu, J. Yang, X. Zhou, W. Deng, B. Chen, “Operation optimization of battery swapping stations with photovoltaics and battery energy storage stations supplied by transformer spare capacity”, IET Generation, Transmission, and Distribution, 17 (17) 3872–3882 (2023). doi: 10.1049/gtd2.12938
K. D. Le, J. T. Day, “Rolling Horizon Method: A New Optimization Technique for Generation Expansion Studies”, IEEE Transactions on Power Apparatus and Systems, PAS-101 (9) 3112 - 3116 (1982). doi: 10.1109/TPAS.1982.317523
S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural Compuation, 9 (8) 1735–1780 (1997). doi: 10.1162/neco.1997.9.8.1735
J. Wang, P. Liua, J. Hicks-Garner, E. Shermana, S. Soukiaziana, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, “Cycle-life model for graphite-LiFePO4 cells”, Journal of Power Sources, 196 (8) 3942-3948 (2011). doi: 10.1016/j.jpowsour.2010.11.134
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Nisa Evi Fauziah, Muhammad Zakiyullah Romdlony, Aam Muharam, Fitri Yakub

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.