Stability analysis of a hybrid DC-DC buck converter model using dissipation inequality and convex optimization
Abstract
The stability analysis of a DC-DC buck converter is a challenging problem due to the hybrid systems characteristic of its dynamics. Such a challenge arises from the buck converter operation which depends upon the ON/OFF logical transitions of its electronic switch component to correspondingly activate different continuous vector fields of the converter’s temporal dynamics. This paper presents a sum of squares (SOS) polynomial optimization approach for stability analysis of a hybrid model of buck converter which explicitly takes into account the converter’s electronic switching behavior. The proposed method first transforms the converter’s hybrid dynamics model into an equivalent polynomial differential algebraic equation (DAE) model. An SOS programming algorithm is then proposed to computationally prove the stability of the obtained DAE model using Lyapunov’s stability concept. Based on simulation results, it was found that the proposed method requires only 8.5 seconds for proving the stability of a buck converter model. In contrast, exhaustive simulations based on numerical integration scheme require 15.6 seconds to evaluate the stability of the same model. These results thus show the effectiveness of the proposed method as it can prove the converter stability in shorter computational times without requiring exhaustive simulations using numerical integration.
Keywords
Full Text:
PDFReferences
J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby, Power System Dynamics: Stability and Control, 3rd ed., vol. 1. New Jersey: John Wiley & Sons, 2020. Available: https://www.google.co.id/books/edition/Power_System_Dynamics/QuDSDwAAQBAJ?hl=en&gbpv=0
M. Z. Hossain, N. A. Rahim, and J. Selvaraj, “Recent progress and development on power DC-DC converter topology, control, design and applications: A review,” Renew. Sustain. Energy Rev., vol. 81, no. 1, pp. 205–230, Jan. 2018, doi: 10.1016/j.rser.2017.07.017.
P. Irasari, K. Wirtayasa, P. Widiyanto, M. F. Hikmawan, and M. Kasim, “Characteristics analysis of interior and inset type permanent magnet motors for electric vehicle applications,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 12, no. 1, pp. 1–9, Jul. 2021, doi: 10.14203/j.mev.2021.v12.1-9.
R. Ristiana, A. S. Rohman, E. Rijanto, A. Purwadi, E. Hidayat, and C. Machbub, “Designing optimal speed control with observer using integrated battery-electric vehicle (IBEV) model for energy efficiency,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 9, no. 2, pp. 89–100, Dec. 2018, doi: 10.14203/j.mev.2018.v9.89-100.
A. R. Hakim, W. T. Handoyo, and P. Wullandari, “An energy and exergy analysis of photovoltaic system in Bantul Regency, Indonesia,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 9, no. 1, pp. 1–7, Jul. 2018, doi: 10.14203/j.mev.2018.v9.1-7.
S. Mariethoz et al., “Comparison of hybrid control techniques for buck and boost DC-DC converters,” IEEE Trans. Control Syst. Technol., vol. 18, no. 5, pp. 1126–1145, Sep. 2010, doi: 10.1109/TCST.2009.2035306.
M. Dhananjaya and S. Pattnaik, “Review on multi-port DC–DC converters,” IETE Tech. Rev., vol. 39, no. 3, pp. 586–599, 2022, doi: 10.1080/02564602.2021.1882343.
X. Lin and R. Zamora, “Controls of hybrid energy storage systems in microgrids: Critical review, case study and future trends,” J. Energy Storage, vol. 47, no. 1, p. 103884, 2022, doi: 10.1016/j.est.2021.103884.
M. E. Şahin and H. İ. Okumuş, “Parallel-connected buck–boost converter with FLC for hybrid energy dystem,” Electr. Power Components Syst., vol. 48, no. 19–20, pp. 2117–2129, Dec. 2020, doi: 10.1080/15325008.2021.1913261.
M. A. R. Licea, F. J. P. Pinal, A. I. B. Gutiérrez, C. A. H. Ramírez, and J. C. N. Perez, “A reconfigurable buck, boost, and buck-boost converter: Unified model & robust controller,” Math. Probl. Eng., vol. 2018, no. 6251787, pp. 1–8, 2018, doi: 10.1155/2018/6251787.
W. Hu, R. Yang, X. Wang, and F. Zhang, “Stability analysis of voltage controlled buck converter feed from a periodic input,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3079–3089, Apr. 2021, doi: 10.1109/TIE.2020.2982116.
M. E. Şahin and H. İ. Okumuş, “Comparison of different controllers and stability analysis for photovoltaic powered buck-boost DC-DC converter,” Electr. Power Components Syst., vol. 46, no. 2, pp. 149–161, Jan. 2018, doi: 10.1080/15325008.2018.1436617.
J. D. Hauenstein, A. C. Liddell, S. McPherson, and Y. Zhang, “Numerical algebraic geometry and semidefinite programming,” Results Appl. Math., vol. 8, no. 11, p. 100166, Aug. 2021, doi: 10.1016/j.rinam.2021.100166.
E. Mojica-Nava, N. Quijano, N. Rakoto-Ravalontsalama, and A. Gauthier, “A polynomial approach for stability analysis of switched systems,” Syst. Control Lett., vol. 59, no. 2, pp. 98–104, Feb. 2010, doi: 10.1016/j.sysconle.2009.12.004.
G. Fantuzzi, “Verification of some functional inequalities via polynomial optimization,” IFAC-PapersOnLine, vol. 55, no. 16, pp. 166–171, 2022, doi: 10.1016/j.ifacol.2022.09.018.
X. Cheng, J. Liu, and Z. Liu, “Accurate small-signal modeling and stability analysis of wide-input buck converter considering modulation waveform ripples,” IEEE Trans. Power Electron., vol. 37, no. 6, pp. 6962–6971, Jun. 2022, doi: 10.1109/TPEL.2022.3140851.
L. Xiong, X. Liu, Y. Liu, and F. Zhuo, “Modeling and stability issues of voltage-source converter dominated power systems: A review,” CSEE J. Power Energy Syst., vol. 8, no. 6, pp. 1530–15349, Nov. 2020, doi: 10.17775/CSEEJPES.2020.03590.
R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,” IEEE Control Syst., vol. 29, no. 2, pp. 28–93, Apr. 2009, doi: 10.1109/MCS.2008.931718.
S. Andersen, P. Giesl, and S. Hafstein, “Common Lyapunov Functions for Switched Linear Systems: Linear Programming-Based Approach,” IEEE Control Syst. Lett., vol. 7, no. 1, pp. 901–906, 2022, doi: 10.1109/LCSYS.2022.3228857.
Y. Zhu and W. X. Zheng, “Multiple Lyapunov Functions Analysis Approach for Discrete-Time-Switched Piecewise-Affine Systems Under Dwell-Time Constraints,” IEEE Trans. Automat. Contr., vol. 65, no. 5, pp. 2177–2184, May 2020, doi: 10.1109/TAC.2019.2938302.
Y. Tang and Y. Li, “Common Lyapunov Function Based Stability Analysis of VSC With Limits of Phase Locked Loop,” IEEE Trans. Power Syst., vol. 38, no. 2, pp. 1759–1762, 2023, doi: 10.1109/TPWRS.2022.3233762.
Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, “Chordal and factor-width decompositions for scalable semidefinite and polynomial optimization,” Annu. Rev. Control, vol. 52, pp. 243–279, Dec. 2021, doi: 10.1016/j.arcontrol.2021.09.001.
J. H. Lee, N. Sisarat, and L. Jiao, “Multi-objective convex polynomial optimization and semidefinite programming relaxations,” J. Glob. Optim., vol. 80, no. 1, pp. 117–138, 2021, doi: 10.1007/s10898-020-00969-x.
S. Yuan, M. Lv, S. Baldi, and L. Zhang, “Lyapunov-equation-based stability analysis for switched linear systems and its application to switched adaptive control,” IEEE Trans. Automat. Contr., vol. 66, no. 5, pp. 2250–2256, 2020, doi: 10.1109/TAC.2020.3003647.
D. Jagt, S. Shivakumar, P. Seiler, and M. Peet, “Efficient data structures for representation of polynomial optimization problems: Implementation in SOSTOOLS,” IEEE Control Syst. Lett., vol. 6, no. 1, pp. 3493–3498, 2022, doi: 10.1109/LCSYS.2022.3183650.
C. Wang, Z. H. Yang, and L. Zhi, “Global optimization of polynomials over real algebraic sets,” J. Syst. Sci. Complex., vol. 32, no. 1, pp. 158–184, 2019, doi: doi.org/10.1007/s11424-019-8351-5.
A. Papachristodoulou et al., “SOSTOOLS version 4.00 sum of squares optimization toolbox for MATLAB,” arXiv 1310.4716, pp. 1–71, 2021, doi: 10.48550/arXiv.1310.4716.
G. Averkov, “Optimal size of linear matrix inequalities in semidefinite approaches to polynomial optimization,” SIAM J. Appl. Algebr. Geom., vol. 3, no. 1, pp. 128–151, 2019, doi: 10.1137/18M1201342.
S. Behrends and A. Schöbel, “Generating valid linear inequalities for nonlinear programs via sums of squares,” J. Optim. Theory Appl., vol. 186, no. 1, pp. 911–935, 2020, doi: 10.1007/s10957-020-01736-4.
A. Yurtsever, J. A. Tropp, O. Ercoq, M. Udell, and V. Cevher, “Scalable semidefinite programming,” SIAM J. Math. Data Sci., vol. 3, no. 1, pp. 171–200, 2021, doi: 10.1137/19M1305045.
H. K. Khalil, Nonlinear Control. Essex: Pearson, 2015. Available: www.pearson.com/en-gb/subject-catalog/p/nonlinear-control-global-edition/P200000004622
A. Majumdar, G. Hall, and A. A. Ahmadi, “Recent scalability improvements for semidefinite programming with applications in machine learning, control, and robotics,” Annu. Rev. Control. Robot. Auton. Syst., vol. 3, pp. 331–360, 2020, doi: 10.1146/annurev-control-091819-074326.
The MathWorks Inc., “MATLAB version: 9.12.0 (R20221).” The MathWorks Inc., Natick, Massachusetts, 2022, [Online]. Available: https://www.mathworks.com.
M. ApS, “MOSEK Optimization Toolbox for MATLAB 10.0.46,” Mosek User’s Guide and Reference Manual, May 23, 2023. https://docs.mosek.com/latest/toolbox/index.html.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Journal of Mechatronics, Electrical Power, and Vehicular Technology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.