Component degradation and system deterioration: An overview of early termination of PV-DG microgrid system

Tinton Dwi Atmaja, Dalila Mat Said, Sevia Mahdaliza Idrus, Ahmad Fudholi, Nasarudin Ahmad, Dian Andriani, Ahmad Rajani, Sohrab Mirsaeidi, Haznan Abimanyu

Abstract

Degradation of components and system failure within the microgrid system is deteriorating the performance of electrification. The aim of this study is to discuss the relationship and connections between issues resulting from degradation and deterioration in the microgrid system, in addition to introducing the prominent impacts which may eventually lead to the premature termination of the microgrid system. This study explored the microgrid degradation and deterioration issues within four microgrid sections: generation section, storage section, transmission section, and distribution section. Subsequently, this study analyzes, derives, and classifies all emerging issues into four types of prominent impacts. The degradation and deterioration invoked many component performance issues into four main damaging outcomes, namely (i) deteriorated transmission line yielded issues regarding expected energy not achieved; (ii) energy deficit and unpredicted blackout come after the depth of discharge (DOD) reduction and invoke a loss of power supply; (iii) a shorter battery life cycle, shorter transformer lifespan, and decreased DG lifetime concluded as a shorter microgrid life expectancy; and (iv) rapid microgrid
broke down and the crash of the key component inadvertently fastened the time to failure and gave rise to the early failure of a microgrid system. It is envisaged that the discussion in this study can provide useful mapped information for the researcher, stakeholder, operator, and other parties for thoroughly addressing various degradation and deterioration issues and anticipating the early termination of the microgrid system.




Keywords


early failure; expected energy not achieved; loss of power supply; microgrid termination; shorter lifespan.

Full Text:

PDF


References


United Nation, “Ensure access to affordable, reliable, sustainable and modern energy,” United Nations Sustainable Development Goals, 2015. https://www.un.org/sustainabledevelopment/energy/ (accessed Aug. 20, 2022).

The World Bank, “Report: Universal Access to Sustainable Energy Will Remain Elusive Without Addressing Inequalities,” World Bank Press Release, 2021. https://www.worldbank.org/en/news/press-release/2021/06/07/report-universal-access-to-sustainable-energy-will-remain-elusive-without-addressing-inequalities (accessed Aug. 20, 2022).

M. Sandelic, S. Peyghami, A. Sangwongwanich, and F. Blaabjerg, “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renew. Sustain. Energy Rev., vol. 159, p. 112127, May 2022, doi: 10.1016/j.rser.2022.112127.

T. D. Atmaja, R. Darussalam, and D. Andriani, “Vertical facade PV installation to optimize microgrid system on high rise EV parking lot with AC and DC charging station,” in 2017 International Conference on Sustainable Energy Engineering and Application (ICSEEA), Oct. 2017, pp. 164–171, doi: 10.1109/ICSEEA.2017.8267703.

L. Martirano, S. Fornari, A. Di Giorgio, and F. Liberati, “A case study of a commercial/residential microgrid integrating cogeneration and electrical local users,” in 2013 12th International Conference on Environment and Electrical Engineering, May 2013, pp. 363–368, doi: 10.1109/EEEIC.2013.6549543.

O. Babayomi, T. Shomefun, and Z. Zhang, “Energy Efficiency of Sustainable Renewable Microgrids for Off-Grid Electrification,” in 2020 IEEE PES/IAS PowerAfrica, Aug. 2020, pp. 1–5, doi: 10.1109/PowerAfrica49420.2020.9219958.

A. Ghasemi-Marzbali, R. Ahmadiahangar, S. G. Orimi, M. Shafiei, T. Haring, and A. Rosin, “Energy Management of an Isolated Microgrid: A Practical Case,” in IECON 2021 – 47th Annual Conference of the IEEE Industrial Electronics Society, Oct. 2021, pp. 1–6, doi: 10.1109/IECON48115.2021.9589801.

Y.-O. Udoakah, E. Mudaheranwa, and L. Cipcigan, “Dynamic Modeling of Energy Consumption Pattern of a Typical Nigerian Average Urban and Rural Household for Microgrid PV Design,” in 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Sep. 2019, pp. 1–5, doi: 10.1109/ISGTEurope.2019.8905464.

M. Effendy, N. Mardiyah, and K. Hidayat, “Efficiency improvement of photovolatic by using maximum power point tracking based on a new fuzzy logic controller,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 9, no. 2, pp. 57–64, Dec. 2018, doi: 10.14203/j.mev.2018.v9.57-64.

S. S. Reddy and C. Yammani, “Odd-Even-Prime pattern for PV array to increase power output under partial shading conditions,” Energy, vol. 213, p. 118780, Dec. 2020, doi: 10.1016/j.energy.2020.118780.

A. Iranmanesh, “Intensifying the melting process of a triple-tube latent heat energy storage unit via inserting a middle plate into the phase change material container,” J. Energy Storage, vol. 56, p. 105982, Dec. 2022, doi: 10.1016/j.est.2022.105982.

T. D. Atmaja and G. Pikra, “Absorber Layer Addition and Thermal Storage Media Comparison for Concentrated Solar Power Plant Optimization,” Energy Procedia, vol. 32, pp. 74–83, 2013, doi: 10.1016/j.egypro.2013.05.010.

E. Riyanto et al., “A review of atomic layer deposition for high lithium-ion battery performance,” J. Mater. Res. Technol., vol. 15, pp. 5466–5481, Nov. 2021, doi: 10.1016/j.jmrt.2021.10.138.

V. M. Gonçalves, E. M. Baptista Bolonhez, G. E. Mendes Campos, and L. H. Sathler, “Transmission line routing optimization using rapid random trees,” Electr. Power Syst. Res., vol. 194, p. 107096, May 2021, doi: 10.1016/j.epsr.2021.107096.

V. Rexhepi and P. Nakov, “Condition assessment of power transformers status based on moisture level using fuzzy logic techniques,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 9, no. 1, pp. 17–24, Jul. 2018, doi: 10.14203/j.mev.2018.v9.17-24.

M. Abasi, A. Rohani, F. Hatami, M. Joorabian, and G. B. Gharehpetian, “Fault location determination in three-terminal transmission lines connected to industrial microgrids without requiring fault classification data and independent of line parameters,” Int. J. Electr. Power Energy Syst., vol. 131, p. 107044, Oct. 2021, doi: 10.1016/j.ijepes.2021.107044.

Z. Li, H. Wang, Q. Ai, and Y. Zhang, “Interactive optimization between active distribution network with multi-microgrids based on distributed algorithm,” Energy Reports, vol. 6, pp. 385–391, Dec. 2020, doi: 10.1016/j.egyr.2020.11.226.

J. Gao, J.-J. Chen, Y. Cai, S.-Q. Zeng, and K. Peng, “A two-stage Microgrid cost optimization considering distribution network loss and voltage deviation,” Energy Reports, vol. 6, pp. 263–267, Feb. 2020, doi: 10.1016/j.egyr.2019.11.072.

E. Ganji and M. Mahdavian, “Improvement of power grid stability and load distribution using diesel excitation controller,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 13, no. 1, pp. 36–47, Jul. 2022, doi: 10.14203/j.mev.2022.v13.36-47.

A. Younesi, H. Shayeghi, Z. Wang, P. Siano, A. Mehrizi-Sani, and A. Safari, “Trends in modern power systems resilience: State-of-the-art review,” Renew. Sustain. Energy Rev., vol. 162, p. 112397, Jul. 2022, doi: 10.1016/j.rser.2022.112397.

A. O. Yakub, N. N. Same, A. B. Owolabi, B. E. K. Nsafon, D. Suh, and J.-S. Huh, “Optimizing the performance of hybrid renewable energy systems to accelerate a sustainable energy transition in Nigeria: A case study of a rural healthcare centre in Kano,” Energy Strateg. Rev., vol. 43, p. 100906, Sep. 2022, doi: 10.1016/j.esr.2022.100906.

B. Akbas, A. S. Kocaman, D. Nock, and P. A. Trotter, “Rural electrification: An overview of optimization methods,” Renew. Sustain. Energy Rev., vol. 156, p. 111935, Mar. 2022, doi: 10.1016/j.rser.2021.111935.

G. Veilleux et al., “Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study,” Energy Sustain. Dev., vol. 54, pp. 1–13, Feb. 2020, doi: 10.1016/j.esd.2019.09.007.

A. Haghighat Mamaghani, S. A. Avella Escandon, B. Najafi, A. Shirazi, and F. Rinaldi, “Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia,” Renew. Energy, vol. 97, pp. 293–305, Nov. 2016, doi: 10.1016/j.renene.2016.05.086.

T. D. Atmaja, D. Andriani, and R. Darussalam, “Smart Grid communication applications: measurement equipment and networks architecture for data and energy flow,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 10, no. 2, p. 73, Nov. 2019, doi: 10.14203/j.mev.2019.v10.73-84.

K. Cabana-Jiménez, J. E. Candelo-Becerra, and V. Sousa Santos, “Comprehensive Analysis of Microgrids Configurations and Topologies,” Sustainability, vol. 14, no. 3, p. 1056, Jan. 2022, doi: 10.3390/su14031056.

M. Günther, “A hybrid PV-battery/diesel electricity supply on Peucang island: an economic evaluation,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 7, no. 2, pp. 113–122, Dec. 2016, doi: 10.14203/j.mev.2016.v7.113-122.

International Energy Agency (IEA), “World Energy Outlook 2021,” 2022. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2021.

G. Xavier de Andrade Pinto, L. P.Costa, H. F. Naspolini, and R. Rüther, “Evaluation of Technical Feasibility and Financial Attractiveness of a 1MWp Solar Photovoltaic Generator on Ground and Building Rooftops At the Federal University of Santa Catarina - Brazil,” in Proceedings of the ISES Solar World Congress 2021, 2021, pp. 1–12, doi: 10.18086/swc.2021.17.03.

S. Tabish and I. Ashraf, “Simulation of partial shading on solar photovoltaic modules with experimental verification,” Int. J. Ambient Energy, vol. 38, no. 2, pp. 161–170, Feb. 2017, doi: 10.1080/01430750.2015.1074614.

G. Celli, E. Ghiani, G. G. Soma, and F. Pilo, “Pseudo sequential Monte Carlo to plan the integration of RES in active distribution networks,” 2011, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84877263410&partnerID=40&md5=4885a54f2e46c35a386167ddb97981af.

M. Tamoor, M. Abu Bakar Tahir, M. A. Zaka, and E. Iqtidar, “Photovoltaic distributed generation integrated electrical distribution system for development of sustainable energy using reliability assessment indices and levelized cost of electricity,” Environ. Prog. Sustain. Energy, vol. 41, no. 4, Jul. 2022, doi: 10.1002/ep.13815.

M. M. Baiek, A. E. Esmaio, M. Nizam, M. Anwar, and H. M. S. Atia, “Derivative load voltage and particle swarm optimization to determine optimum sizing and placement of shunt capacitor in improving line losses,” J. Mechatronics, Electr. Power, Veh. Technol., vol. 7, no. 2, pp. 67–76, Dec. 2016, doi: 10.14203/j.mev.2016.v7.67-76.

R. Hou, A. Maleki, and P. Li, “Design optimization and optimal power management of standalone solar-hydrogen system using a new metaheuristic algorithm,” J. Energy Storage, vol. 55, p. 105521, Nov. 2022, doi: 10.1016/j.est.2022.105521.

S. Peyghami, F. Blaabjerg, and P. Palensky, “Incorporating Power Electronic Converters Reliability Into Modern Power System Reliability Analysis,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 9, no. 2, pp. 1668–1681, Apr. 2021, doi: 10.1109/JESTPE.2020.2967216.

J. Peters, M. Sievert, and M. A. Toman, “Rural electrification through mini-grids: Challenges ahead,” Energy Policy, vol. 132, pp. 27–31, Sep. 2019, doi: 10.1016/j.enpol.2019.05.016.

R. K. Asyuri and E. A. Setiawan, “Optimization and Integration of Renewable Energy Sources with Regional Tourism Potentials to Improve the Welfare of Local Communities,” IOP Conf. Ser. Earth Environ. Sci., vol. 1050, no. 1, p. 012007, Jul. 2022, doi: 10.1088/1755-1315/1050/1/012007.

G. Dimov, S. Tzvetkova, A. Petleshkov, and Y. Lozanov, “Change of power supply continuity indices due to force majeure circumstances,” in 2020 12th Electrical Engineering Faculty Conference (BulEF), Sep. 2020, pp. 1–5, doi: 10.1109/BulEF51036.2020.9326031.

Q. Li, L. Wang, and S. Hou, “Microgrid Reliability Evaluation Based on Condition-Dependent Failure Models of Power Electronic Devices,” in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Oct. 2018, pp. 1–6, doi: 10.1109/EI2.2018.8582498.

A. Ostrowska et al., “Power Quality Assessment in a Real Microgrid-Statistical Assessment of Different Long-Term Working Conditions,” Energies, vol. 15, no. 21, p. 8089, Oct. 2022, doi: 10.3390/en15218089.

Q. Xiao et al., “An improved power regulation method for a three-terminal hybrid AC/DC microgrid during module failure,” Int. J. Electr. Power Energy Syst., vol. 123, p. 106330, Dec. 2020, doi: 10.1016/j.ijepes.2020.106330.

A. M. Nakhaee, S. A. Hosseini, S. H. H. Sadeghi, and A. Nasiri, “A Framework for Assessing the Impact of Operational Uncertainties on the Reliability of Adaptive Microgrid Protection Schemes,” Arab. J. Sci. Eng., Oct. 2022, doi: 10.1007/s13369-022-07347-7.

W. Zhong, L. Wang, Z. Liu, and S. Hou, “Reliability Evaluation and Improvement of Islanded Microgrid Considering Operation Failures of Power Electronic Equipment,” J. Mod. Power Syst. Clean Energy, vol. 8, no. 1, pp. 111–123, 2020, doi: 10.35833/MPCE.2018.000666.

A. Turnbull, J. Carroll, and A. McDonald, “Combining SCADA and vibration data into a single anomaly detection model to predict wind turbine component failure,” Wind Energy, vol. 24, no. 3, pp. 197–211, Mar. 2021, doi: 10.1002/we.2567.

Y. H. Yang, Y. L. Xin, J. J. Zhou, W. H. Tang, and B. Li, “Failure probability estimation of transmission lines during typhoon based on tropical cyclone wind model and component vulnerability model,” in 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nov. 2017, pp. 1–6, doi: 10.1109/APPEEC.2017.8308936.

G. Wu and Z. Li, “A Cascading Failure Model of Power Systems Considering Components’ Multi-State Failures,” in 2019 Prognostics and System Health Management Conference (PHM-Qingdao), Oct. 2019, pp. 1–6, doi: 10.1109/PHM-Qingdao46334.2019.8942818.

L. Gigoni, A. Betti, M. Tucci, and E. Crisostomi, “A Scalable Predictive Maintenance Model for Detecting Wind Turbine Component Failures Based on SCADA Data,” in 2019 IEEE Power & Energy Society General Meeting (PESGM), Aug. 2019, pp. 1–5, doi: 10.1109/PESGM40551.2019.8973898.

M. Fischer, S. Tenbohlen, M. Schafer, and R. Haug, “Determining power transformers’ sequence of maintenance and repair in power grids,” in 2010 IEEE International Symposium on Electrical Insulation, Jun. 2010, pp. 1–6, doi: 10.1109/ELINSL.2010.5549785.

V.-H. Bui, A. Hussain, and H.-M. Kim, “A Strategy for Optimal Operation of Hybrid AC/DC Microgrid under Different Connection Failure Scenarios,” Int. J. Smart Home, vol. 10, no. 12, pp. 231–244, Dec. 2016, doi: 10.14257/ijsh.2016.10.12.22.

M. Pompili, L. Calcara, and S. Sangiovanni, “MV Underground Power Cable Joints Premature Failures,” in 2020 AEIT International Annual Conference (AEIT), Sep. 2020, pp. 1–4, doi: 10.23919/AEIT50178.2020.9241185.

J. Weichold, R. Calone, I. Gentilini, G. Bolcato, F. Giammanco, and M. Stalder, “The smart termination: an innovative component to enable smart grids development,” in 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), 2013, pp. 0598–0598, doi: 10.1049/cp.2013.0826.

R. Zhao, J. Chen, Z. Hou, B. Li, M. Lin, and M. Duan, “A Security Early Warning Method of Power Grid Based on Failure Risk Assessment,” in 2021 IEEE Sustainable Power and Energy Conference (iSPEC), Dec. 2021, pp. 1627–1633, doi: 10.1109/iSPEC53008.2021.9735584.

Q. Yu, Z. Jiang, Y. Liu, G. Long, M. Guo, and D. Yang, “Research of Early Warning of Failure with Load Tendency Based on Non-intrusive Load Monitoring in Microgrid,” in 2020 IEEE 6th International Conference on Control Science and Systems Engineering (ICCSSE), Jul. 2020, pp. 232–236, doi: 10.1109/ICCSSE50399.2020.9171952.

J. Han, L. Zhang, and Y. Li, “Hotspots, flaws and deficiencies of research on rural energy upgrading: A review,” Energy Strateg. Rev., vol. 38, p. 100766, Nov. 2021, doi: 10.1016/j.esr.2021.100766.

F. Gonzalez-Longatt, C. Adiyabazar, and E. V. Martinez, “Setting and Testing of the Out-of-Step Protection at Mongolian Transmission System,” Energies, vol. 14, no. 23, p. 8170, Dec. 2021, doi: 10.3390/en14238170.

P. Aaslid, M. Korpås, M. M. Belsnes, and O. B. Fosso, “Stochastic operation of energy constrained microgrids considering battery degradation,” Electr. Power Syst. Res., vol. 212, p. 108462, Nov. 2022, doi: 10.1016/j.epsr.2022.108462.

A. Yahiaoui, K. Benmansour, and M. Tadjine, “Control, analysis and optimization of hybrid PV-Diesel-Battery systems for isolated rural city in Algeria,” Sol. Energy, vol. 137, pp. 1–10, Nov. 2016, doi: 10.1016/j.solener.2016.07.050.

F. Fodhil, A. Hamidat, and O. Nadjemi, “Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria,” Energy, vol. 169, pp. 613–624, Feb. 2019, doi: 10.1016/j.energy.2018.12.049.

S. M. Shaahid and I. El-Amin, “Techno-economic evaluation of off-grid hybrid photovoltaic–diesel–battery power systems for rural electrification in Saudi Arabia—A way forward for sustainable development,” Renew. Sustain. Energy Rev., vol. 13, no. 3, pp. 625–633, Apr. 2009, doi: 10.1016/j.rser.2007.11.017.

S. Yilmaz and F. Dincer, “Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey,” Renew. Sustain. Energy Rev., vol. 77, pp. 344–352, Sep. 2017, doi: 10.1016/j.rser.2017.04.037.

H. Rezzouk and A. Mellit, “Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria,” Renew. Sustain. Energy Rev., vol. 43, pp. 1134–1150, Mar. 2015, doi: 10.1016/j.rser.2014.11.103.

T. D. Atmaja et al., “Fuel Saving on Diesel Genset using PV/Battery Spike Cutting in Remote Area Microgrid,” MATEC Web Conf., vol. 164, p. 01045, Apr. 2018, doi: 10.1051/matecconf/201816401045.

F. Almeshqab and T. S. Ustun, “Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects,” Renew. Sustain. Energy Rev., vol. 102, pp. 35–53, Mar. 2019, doi: 10.1016/j.rser.2018.11.035.

A. Qashou, S. Yousef, and E. Sanchez-Velazquez, “Mining sensor data in a smart environment: a study of control algorithms and microgrid testbed for temporal forecasting and patterns of failure,” Int. J. Syst. Assur. Eng. Manag., vol. 13, no. 5, pp. 2371–2390, Oct. 2022, doi: 10.1007/s13198-022-01649-7.

Y. Zhang, J. Liu, B. Song, and T. Yu, “Reliability modeling for dependent competing failure processes between component degradation and system performance deterioration,” in Safety and Reliability – Safe Societies in a Changing World, London: CRC Press, 2018, pp. 2475–2482. doi: 10.1201/9781351174664-311

D. L. Bätzner, A. Romeo, M. Terheggen, M. Döbeli, H. Zogg, and A. N. Tiwari, “Stability aspects in CdTe/CdS solar cells,” Thin Solid Films, vol. 451–452, pp. 536–543, Mar. 2004, doi: 10.1016/j.tsf.2003.10.141.

S. G. Kumar and K. S. R. K. Rao, “Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects,” Energy Environ. Sci., vol. 7, no. 1, pp. 45–102, 2014, doi: 10.1039/C3EE41981A.

D. Azuatalam, K. Paridari, Y. Ma, M. Förstl, A. C. Chapman, and G. Verbič, “Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation,” Renew. Sustain. Energy Rev., vol. 112, pp. 555–570, Sep. 2019, doi: 10.1016/j.rser.2019.06.007.

G. Liu, Y. Zhang, F. Luo, and J. Yuan, “Design of Wireless Sensor Network Routing for Renewable Energy Microgrid,” IOP Conf. Ser. Mater. Sci. Eng., vol. 366, p. 012022, Jun. 2018, doi: 10.1088/1757-899X/366/1/012022.

Y. Liu, H. Shi, L. Guo, T. Xu, B. Zhao, and C. Wang, “Towards long-period operational reliability of independent microgrid: A risk-aware energy scheduling and stochastic optimization method,” Energy, vol. 254, p. 124291, Sep. 2022, doi: 10.1016/j.energy.2022.124291.

Y. V. Makarov, “Probabilistic assessment of the energy not produced due to transmission constraints,” in 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 4, pp. 435–437, doi: 10.1109/PTC.2003.1304762.

F. J. V. Fernández, F. Segura Manzano, J. M. Andújar Márquez, and A. J. Calderón Godoy, “Extended Model Predictive Controller to Develop Energy Management Systems in Renewable Source-Based Smart Microgrids with Hydrogen as Backup. Theoretical Foundation and Case Study,” Sustainability, vol. 12, no. 21, p. 8969, Oct. 2020, doi: 10.3390/su12218969.

Y. García-Vera, R. Dufo-López, and J. Bernal-Agustín, “Optimization of Isolated Hybrid Microgrids with Renewable Energy Based on Different Battery Models and Technologies,” Energies, vol. 13, no. 3, p. 581, Jan. 2020, doi: 10.3390/en13030581.

S. Kharel and B. Shabani, “Hydrogen as a Long-Term Large-Scale Energy Storage Solution to Support Renewables,” Energies, vol. 11, no. 10, p. 2825, Oct. 2018, doi: 10.3390/en11102825.

N. Shirzadi, H. Rasoulian, F. Nasiri, and U. Eicker, “Resilience Enhancement of an Urban Microgrid during Off-Grid Mode Operation Using Critical Load Indicators,” Energies, vol. 15, no. 20, p. 7669, Oct. 2022, doi: 10.3390/en15207669.

T. M. Layadi, G. Champenois, M. Mostefai, and D. Abbes, “Lifetime estimation tool of lead–acid batteries for hybrid power sources design,” Simul. Model. Pract. Theory, vol. 54, pp. 36–48, May 2015, doi: 10.1016/j.simpat.2015.03.001.

M. Derks and H. Romijn, “Sustainable performance challenges of rural microgrids: Analysis of incentives and policy framework in Indonesia,” Energy Sustain. Dev., vol. 53, pp. 57–70, Dec. 2019, doi: 10.1016/j.esd.2019.08.003.

K. Takeno, M. Ichimura, K. Takano, and J. Yamaki, “Influence of cycle capacity deterioration and storage capacity deterioration on Li-ion batteries used in mobile phones,” J. Power Sources, vol. 142, no. 1–2, pp. 298–305, Mar. 2005, doi: 10.1016/j.jpowsour.2004.10.007.

S. Zhang, K. Zhao, T. Zhu, and J. Li, “Electrochemomechanical degradation of high-capacity battery electrode materials,” Prog. Mater. Sci., vol. 89, pp. 479–521, Aug. 2017, doi: 10.1016/j.pmatsci.2017.04.014.

Y. Lv, X. Yang, and G. Zhang, “Durability of phase-change-material module and its relieving effect on battery deterioration during long-term cycles,” Appl. Therm. Eng., vol. 179, p. 115747, Oct. 2020, doi: 10.1016/j.applthermaleng.2020.115747.

S. Hardy, D. Van Hertem, and H. Ergun, “A Techno-Economic Analysis of meshed Topologies of Offshore Wind HVAC Transmission,” in 2021 IEEE Madrid PowerTech, Jun. 2021, pp. 1–6, doi: 10.1109/PowerTech46648.2021.9494784.

S. Hardy, H. Ergun, and D. Van Hertem, “A Greedy Algorithm for Optimizing Offshore Wind Transmission Topologies,” IEEE Trans. Power Syst., vol. 37, no. 3, pp. 2113–2121, May 2022, doi: 10.1109/TPWRS.2021.3121017.

J. M. Lujano-Rojas, R. Dufo-López, and J. L. Bernal-Agustín, “Technical and economic effects of charge controller operation and coulombic efficiency on stand-alone hybrid power systems,” Energy Convers. Manag., vol. 86, pp. 709–716, Oct. 2014, doi: 10.1016/j.enconman.2014.06.053.

P. Singh and J. S. Lather, “Accurate power-sharing, voltage regulation, and SOC regulation for LVDC microgrid with hybrid energy storage system using artificial neural network,” Int. J. Green Energy, vol. 17, no. 12, pp. 756–769, Sep. 2020, doi: 10.1080/15435075.2020.1798767.

Y. V. Makarov, R. C. Hardiman, and D. L. Hawkins, “Risk, reliability, cascading, and restructuring,” in IEEE Power Engineering Society General Meeting, 2004., vol. 2, pp. 383–395, doi: 10.1109/PES.2004.1372816.

A. Volkanovski, A. Ballesteros Avila, and M. Peinador Veira, “Trend Analysis of Loss of Offsite Power Events,” Jun. 2016, doi: 10.1115/ICONE24-60154.

D. F. Lizondo, V. A. Jimenez, P. B. Araujo, and A. Will, “Conceptual Microgrid Management Framework Based on Adaptive and Autonomous Multi-Agent Systems,” J. Comput. Sci. Technol., vol. 22, no. 1, p. e01, Apr. 2022, doi: 10.24215/16666038.22.e01.

M. Hamzeh and B. Vahidi, “The impact of cyber network configuration on the dynamic-thermal failure of transformers considering distributed generator controller,” Int. J. Electr. Power Energy Syst., vol. 137, p. 107786, May 2022, doi: 10.1016/j.ijepes.2021.107786.

E. C. X. Ikejemba, P. B. Mpuan, P. C. Schuur, and J. Van Hillegersberg, “The empirical reality & sustainable management failures of renewable energy projects in Sub-Saharan Africa (part 1 of 2),” Renew. Energy, vol. 102, pp. 234–240, Mar. 2017, doi: 10.1016/j.renene.2016.10.037.

M. Aslani, H. Hashemi‐Dezaki, and A. Ketabi, “Analytical reliability evaluation method of smart micro‐grids considering the cyber failures and information transmission system faults,” IET Renew. Power Gener., Jul. 2022, doi: 10.1049/rpg2.12541.

A. M. Moheb, E. A. El-Hay, and A. A. El-Fergany, “Comprehensive Review on Fault Ride-Through Requirements of Renewable Hybrid Microgrids,” Energies, vol. 15, no. 18, p. 6785, Sep. 2022, doi: 10.3390/en15186785.

D. Kančev, A. Duchac, B. Zerger, M. Maqua, and D. Wattrelos, “Statistical analysis of events related to emergency diesel generators failures in the nuclear industry,” Nucl. Eng. Des., vol. 273, pp. 321–331, Jul. 2014, doi: 10.1016/j.nucengdes.2014.03.050.

S. Paul and Z. H. Rather, “A novel approach for optimal cabling and determination of suitable topology of MTDC connected offshore wind farm cluster,” Electr. Power Syst. Res., vol. 208, p. 107877, Jul. 2022, doi: 10.1016/j.epsr.2022.107877.

S. D. Negara, “The Impact of Local Content Requirements on the Indonesian Manufacturing Industry,” 2016. doi: http://hdl.handle.net/11540/6716.

S. K. Akula and H. Salehfar, “Risk-based Classical Failure Mode and Effect Analysis (FMEA) of Microgrid Cyber-physical Energy Systems,” in 2021 North American Power Symposium (NAPS), Nov. 2021, pp. 1–6, doi: 10.1109/NAPS52732.2021.9654717.

D. Akinyele, J. Belikov, and Y. Levron, “Challenges of Microgrids in Remote Communities: A STEEP Model Application,” Energies, vol. 11, no. 2, p. 432, Feb. 2018, doi: 10.3390/en11020432.

O. Babayomi and T. Okharedia, “Challenges to Sub-Saharan Africa’s Renewable Microgrid Expansion - A CETEP Solution Model,” in 2019 IEEE PES/IAS PowerAfrica, Aug. 2019, pp. 617–621, doi: 10.1109/PowerAfrica.2019.8928865.

D. Xu and Y. Long, “The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities,” Sustainability, vol. 11, no. 11, p. 3168, Jun. 2019, doi: 10.3390/su11113168.

D. E. Ighravwe and D. Mashao, “Development of a Techno-economic Framework for Renewable Energy Project Financing,” in 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Nov. 2019, pp. 120–124, doi: 10.1109/REPE48501.2019.9025162.

Y. Pu et al., “Optimal sizing for an integrated energy system considering degradation and seasonal hydrogen storage,” Appl. Energy, vol. 302, p. 117542, Nov. 2021, doi: 10.1016/j.apenergy.2021.117542.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Journal of Mechatronics, Electrical Power, and Vehicular Technology

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.