Review of Kalman filter variants for SLAM in mobile robotics with linearization and covariance initialization
Abstract
Keywords
Full Text:
PDFReferences
C. Liu, Y. Liu, R. Xie, Z. Li, S. Bai, and Y. Zhao, “The evolution of robotics: research and application progress of dental implant robotic systems,” Int. J. Oral Sci., vol. 16, no. 1, p. 28, Apr. 2024.
S. I. Wahidi, S. Oterkus, and E. Oterkus, “Robotic welding techniques in marine structures and production processes: A systematic literature review,” Mar. Struct., vol. 95, no. February, p. 103608, May 2024.
F. Ouyang and W. Xu, “The effects of educational robotics in STEM education: a multilevel meta-analysis,” Int. J. STEM Educ., vol. 11, no. 1, p. 7, Feb. 2024.
O. Ozisik and S. Yavuz, “Simultaneous localization and mapping with limited sensing using Extended Kalman Filter and Hough transform,” Teh. Vjesn. - Tech. Gaz., vol. 23, no. 6, pp. 1731–1738, Dec. 2016.
Chenguang, “Short Note on Robotics,” J. Biomed. Syst. Emerg. Technol., vol. 8, no. 2, 2021.
R. G. Prasuna and S. R. Potturu, “Deep reinforcement learning in mobile robotics – a concise review,” Multimed. Tools Appl., vol. 83, pp. 70815–70836, Feb. 2024.
M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, “A solution to the simultaneous localization and map building (SLAM) problem,” IEEE Trans. Robot. Autom., vol. 17, no. 3, pp. 229–241, Jun. 2001.
I. Lluvia, E. Lazkano, and A. Ansuategi, “Active Mapping and Robot Exploration: A Survey,” Sensors, vol. 21, no. 7, p. 2445, Apr. 2021.
M.-F. R. Lee and S. H. Yusuf, “Mobile robot navigation using deep reinforcement learning,” Processes, vol. 10, no. 12, p. 2748, Dec. 2022.
P. K. Panigrahi and S. K. Bisoy, “Localization strategies for autonomous mobile robots: A review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6019–6039, Sep. 2022.
B. Singh, P. Kumar, and N. Kaur, “Advancements and challenges in visual-only simultaneous localization and mapping (V-SLAM): A systematic review,” 2nd Int. Conf. Sustain. Comput. Smart Syst. ICSCSS 2024 - Proc., pp. 116–123, 2024.
A. Loganathan and N. S. Ahmad, “A systematic review on recent advances in autonomous mobile robot navigation,” Eng. Sci. Technol. an Int. J., vol. 40, p. 101343, Apr. 2023.
S. M. Nasti and M. A. Chishti, “A review of AI-Enhanced navigation strategies for mobile robots in dynamic environments,” in 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), IEEE, Jan. 2024, pp. 1239–1244.
A. M. Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A comprehensive survey of visual SLAM algorithms,” Robotics, vol. 11, no. 1, p. 24, Feb. 2022.
J. Uhlmann and S. J. Julier, “Gaussianity and the Kalman filter: A simple yet complicated relationship,” J. Cienc. e Ing., vol. 14, no. 1, pp. 21–26, Jun. 2022.
M. Schumann and J. Haase, “Development of an RFID-based indoor localization system to support firefighters in burning buildings,” in IECON Proceedings (Industrial Electronics Conference), IEEE, Nov. 2024, pp. 1–6.
J. R. Sánchez-Ibáñez, C. J. Pérez-del-Pulgar, and A. García-Cerezo, “Path planning for autonomous mobile robots: A review,” Sensors, vol. 21, no. 23, p. 7898, Nov. 2021.
L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P. Wang, “Path planning techniques for mobile robots: Review and prospect,” Expert Syst. Appl., vol. 227, p. 120254, Oct. 2023.
P. K. Mohanty, A. K. Singh, A. Kumar, M. K. Mahto, and S. Kundu, “Path planning techniques for mobile robots: A review,” in Proceedings of the 13th International Conference on Soft Computing and Pattern Recognition
(SoCPaR 2021), Springer, Cham, 2022, pp. 657–667.
H. Y. Zhang, W. M. Lin, and A. X. Chen, “Path planning for the mobile robot: A review,” Symmetry (Basel)., vol. 10, no. 10, p. 450, 2018.
S. Sellak, Y. Alj, and Y. Salih-Alj, “Monocular visual odometry in mobile robot navigation,” in ISIVC 2024 - Proceedings: 12th IEEE International Symposium on Signal, Image, Video, and Communications, IEEE, May
, pp. 1–6.
A. Abbasi, S. MahmoudZadeh, A. Yazdani, and A. J. Moshayedi, “Feasibility assessment of Kian-I mobile robot for autonomous navigation,” Neural Comput. Appl., vol. 34, no. 2, pp. 1199–1218, Jan. 2022.
I. Brigadnov, A. Lutonin, and K. Bogdanova, “Error state extended Kalman filter localization for underground mining environments,” Symmetry (Basel)., vol. 15, no. 2, p. 344, Jan. 2023.
H. Samani and R. Zhu, “Robotic Automated External Defibrillator Ambulance for Emergency Medical Service in Smart Cities,” IEEE Access, vol. 4, pp. 268–283, 2016.
D. Nemec, V. Šimák, A. Janota, M. Hruboš, and E. Bubeníková, “Precise localization of the mobile wheeled robot using sensor fusion of odometry, visual artificial landmarks and inertial sensors,” Rob. Auton. Syst., vol. 112, pp. 168–177, Feb. 2019.
F. Pei, M. Zhu, and X. Wu, “A decorrelated distributed EKF-SLAM system for the autonomous navigation of mobile robots,” J. Intell. Robot. Syst., vol. 98, pp. 819–829, Jun. 2020.
M. Tang, Z. Chen, and F. Yin, “Robot tracking in SLAM with Masreliez-Martin unscented Kalman filter,” Int. J. Control. Autom. Syst., vol. 18, no. 9, pp. 2315–2325, 2020.
C. Nica, M. Oprea, and A.-C. Stan, “On the development of a mobile TurtleBot3 burger multi-robot system for manufacturing environment monitorization,” in Proceedings of Emerging Trends and Technologies on
Intelligent Systems (ETTIS 2021), Springer Singapore, 2022, pp. 323–337.
M. Kanderske and T. Thielmann, “Simultaneous localization and mapping and the situativeness of a new generation of geomedia technologies,” Commun. Public, vol. 4, no. 2, pp. 118–132, Jun. 2019.
C. Ruan, Q. Zang, K. Zhang, and K. Huang, “DN-SLAM: a visual SLAM with ORB features and NeRF mapping in dynamic environments,” IEEE Sens. J., vol. 24, no. 4, pp. 5279–5287, Feb. 2024.
L. Luo, F. Peng, and L. Dong, “Improved multi-sensor fusion dynamic odometry based on Neural networks,” Sensors, vol. 24, no. 19, p. 6193, Sep. 2024.
Y. Cai, Y. Ou, and T. Qin, “Improving SLAM techniques with integrated multi-sensor fusion for 3D reconstruction,” Sensors, vol. 24, no. 7, p. 2033, Mar. 2024.
H. Taheri and Z. C. Xia, “SLAM; definition and evolution,” Eng. Appl. Artif. Intell., vol. 97, p. 104032, Jan. 2021.
X. Dang, Z. Rong, and X. Liang, “Sensor fusion-based approach to eliminating moving objects for SLAM in dynamic environments,” Sensors, vol. 21, no. 1, p. 230, Jan. 2021.
J. M. Pak and C. K. Ahn, “State estimation algorithms for localization: A survey,” Int. J. Control. Autom. Syst., vol. 21, no. 9, pp. 2771–2781, 2023.
H. H. Afshari, S. A. Gadsden, and S. Habibi, “Gaussian filters for parameter and state estimation: A general review of theory and recent trends,” Signal Processing, vol. 135, pp. 218–238, Jun. 2017.
C. Nehate, R. Shinde, S. Naik, M. Aradwad, A. Bhurke, and F. Kazi, “Implementation and evaluation of SLAM systems for a mobile robot,” in 2021 IEEE 18th India Council International Conference (INDICON), IEEE, Dec. 2021, pp. 1–6.
Y. Liu, W. Zhang, F. Li, Z. Zuo, and Q. Huang, “Real-time lidar odometry and mapping with loop closure,” Sensors, vol. 22, no. 12, p. 4373, Jun. 2022.
L. Buonocore, S. R. Barros dos Santos, A. A. Neto, and C. L. Nascimento, “FastSLAM filter implementation for indoor autonomous robot,” in 2016 IEEE Intelligent Vehicles Symposium (IV), IEEE, Jun. 2016, pp. 484–489.
P. M. de Assis Brasil, F. U. Pereira, M. A. de Souza Leite Cuadros, A. R. Cukla, and D. F. Tello Gamarra, “A Study on global path planners algorithms for the simulated TurtleBot 3 robot in ROS,” in 2020 Latin American Robotics Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020 Workshop on Robotics in Education (WRE), IEEE, Nov. 2020, pp. 1–6.
A. Dwijotomo, M. A. Abdul Rahman, M. H. Mohammed Ariff, H. Zamzuri, and W. M. H. Wan Azree, “Cartographer SLAM method for optimization with an adaptive multi-distance scan scheduler,” Appl. Sci., vol. 10, no. 1, p. 347, Jan. 2020.
R. P. Guan, B. Ristic, L. Wang, and J. L. Palmer, “KLD sampling with Gmapping proposal for Monte Carlo localization of mobile robots,” Inf. Fusion, vol. 49, pp. 79–88, Sep. 2019.
T. J. Lee, C. H. Kim, and D. I. D. Cho, “A monocular vision sensor-based efficient SLAM method for indoor service robots,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 318–328, 2019.
B. L. E. A. Balasuriya et al., “Outdoor robot navigation using Gmapping based SLAM algorithm,” in 2016 Moratuwa Engineering Research Conference (MERCon), IEEE, Apr. 2016, pp. 403–408.
A. Palomer, P. Ridao, and D. Ribas, “Multibeam 3D underwater SLAM with probabilistic registration,” Sensors, vol. 16, no. 4, p. 560, Apr. 2016.
P. Du et al., “View-based underwater SLAM using a stereo camera,” in OCEANS 2017 - Aberdeen, IEEE, Jun. 2017, pp. 1–6.
Z. M. Kassas et al., “Aircraft navigation in GNSS-denied environments via radio SLAM with terrestrial signals of opportunity,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 10, pp. 14164–14182, Oct. 2024.
J. Fernandes, K. Li, J. Mirabile, and G. Vesonder, “Application of robot operating system in robot flocks,” in 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), IEEE, 2019, pp. 0359–0363.
R. Safin, R. Lavrenov, K.-H. Hsia, E. Maslak, N. Schiefermeier-Mach, and E. Magid, “Modelling a TurtleBot3 based delivery system for a smart hospital in gazebo,” in 2021 International Siberian Conference on Control and Communications (SIBCON), IEEE, May 2021, pp. 1–6.
S. Zhang and H. Zhao, “Research and implementation of cooperative control for ROS mobile robot,” Proc. Int. Conf. Artif. Life Robot., vol. 29, pp. 43–48, Feb. 2024.
M. H. Gusrial, M. L. H. Abdullah, N. A. Othman, and H. Ahmad, “Enhancing navigation accuracy of Turtlebot3 burger mobile robot through initial covariance matrix determination,” in Lecture Notes in Electrical
Engineering, vol. 1213, 2024, pp. 525–542.
G. Zeng, S. Chen, H. Wu, and M. Yang, “Continuous-discrete extended Kalman filtering based on the neural ordinary differential equations method,” Eng. Appl. Artif. Intell., vol. 133, p. 108611, Jul. 2024.
Y. Bai, B. Yan, C. Zhou, T. Su, and X. Jin, “State of art on state estimation: Kalman filter driven by machine learning,” Annu. Rev. Control, vol. 56, p. 100909, 2023.
M. B. Rhudy, R. A. Salguero, and K. Holappa, “A Kalman filtering tutorial for undergraduate students,” Int. J. Comput. Sci. Eng. Surv., vol. 08, no. 01, pp. 01–18, Feb. 2017.
S. Zhao and B. Huang, “Trial-and-error or avoiding a guess? Initialization of the Kalman filter,” Automatica, vol. 121, p. 109184, Nov. 2020.
N. A. Robins, “A comparison into current SLAM implementations,” Thesis, Toronto Metropolitan University, 2024.
M. S. A. Khan, D. Hussian, Y. Ali, F. U. Rehman, A. Bin Aqeel, and U. S. Khan, “Multi-sensor SLAM for efficient navigation of a mobile robot,” in 2021 4th International Conference on Computing & Information Sciences (ICCIS), IEEE, Nov. 2021, pp. 1–5.
I. Ullah, X. Su, X. Zhang, and D. Choi, “Simultaneous localization and mapping based on Kalman filter and extended Kalman filter,” Wirel. Commun. Mob. Comput., vol. 2020, pp. 1–12, Jun. 2020.
T. Moore and D. Stouch, “A generalized extended Kalman filter implementation for the robot operating system,” in Advances in Intelligent Systems and Computing, vol. 302, Springer, 2016, pp. 335–348.
A. Eman and H. Ramdane, “Mobile robot localization using extended Kalman filter,” in 2020 3rd International Conference on Computer Applications & Information Security (ICCAIS), IEEE, Mar. 2020, pp. 1–5.
I. Ullah, X. Su, J. Zhu, X. Zhang, D. Choi, and Z. Hou, “Evaluation of localization by extended Kalman filter, unscented Kalman filter, and particle filter-based techniques,” Wirel. Commun. Mob. Comput., vol. 2020,
pp. 1–15, Oct. 2020.
N. Ayadi, N. Derbel, N. Morette, C. Novales, and G. Poisson, “Simulation and experimental evaluation of the EKF simultaneous localization and mapping algorithm on the wifibot mobile robot,” J. Artif. Intell. Soft Comput.
Res., vol. 8, no. 2, pp. 91–101, Apr. 2018.
H. Yao et al., “A Benchmark of Absolute and Relative Positioning Solutions in GNSS Denied Environments,” IEEE Internet Things J., vol. 11, no. 3, pp. 4243–4273, Feb. 2024.
L. D’Alfonso, W. Lucia, P. Muraca, and P. Pugliese, “Mobile robot localization via EKF and UKF: A comparison based on real data,” Robotics and
Autonomous Syst., vol. 74, pp. 122–127, Dec. 2015.
T. Kim and T.-H. Park, “Extended Kalman filter (EKF) design for vehicle position tracking using reliability function of radar and LiDAR,” Sensors, vol. 20, no. 15, p. 4126, Jul. 2020.
C.-Y. Yang, H. Samani, Z. Tang, and C. Li, “Implementation of extended kalman filter for localization of ambulance robot,” Int. J. Intell Robot. Appl., vol.8, pp. 960-973, Jun. 2024.
G. G. Ravali and K. N. Raju, “Performance analysis of CKF algorithm for battery SoC estimation with its aging effect,” Int. J. Appl. Power Eng., vol. 13, no. 4, pp. 886-899, Dec. 2024.
M. Kiani and R. Ahmadvand, “The strong tracking innovation filter,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 4, pp. 3261–3270, Aug. 2022.
M. Mohammad, A. Naiari, and M. Hosseynzadeh, “Passive tracking of a target based on Supervisory adaptive EKF and CKF,” in 2020 IEEE 17th International Conference on Smart Communities: Improving Quality of Life Using ICT, IoT and AI (HONET), IEEE, Dec. 2020, pp. 1–5.
F. F. Yadkuri and M. J. Khosrowjerdi, “Methods for improving the linearization problem of extended Kalman filter,” J. Intell. Robot. Syst., vol. 78, pp. 485–497, Jun. 2015.
M. Moradi and R. Havangi, “Nonlinear filter-based estimation of wheel-rail contact forces and related considerations using inertial measurement unit,” J. Electr. Comput. Eng. Innov., vol. 13, no. 2, pp. 353–364, 2025.
Y. Wang, Z. Yang, Y. Wang, Z. Li, V. Dinavahi, and J. Liang, “Resilient dynamic state estimation for power system using Cauchy-Kernel-based maximum correntropy cubature Kalman filter,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–11, 2023.
B. Liu and Z. Wu, “Maximum correntropy quadrature Kalman filter based interacting multiple model approach for maneuvering target tracking,” Signal, Image and Video Process., vol. 19, no. 76, pp. 1-10, Jan. 2025.
Z. Song, Y. Zhang, Y. Yu, and C. Tang, “Cooperative positioning algorithm based on manifold gradient filtering in UAV-WSN,” IEEE Sens. J., vol. 24, no. 8, pp. 12676–12688, Apr. 2024.
M. Rhudy, Y. Gu, and M. R. Napolitano, “An analytical approach for comparing linearization methods in EKF and UKF,” Int. J. Adv. Robot. Syst., vol. 10, no. 4, p. 208, Apr. 2013.
S. M. M. Yousefi, S. S. Mohseni, H. Dehbovid, and R. Ghaderi, “A practical approach to tracking estimation using object trajectory linearization,” Int. J. Comput. Intell. Syst., vol. 17, no. 175, pp. 1-14, Jul. 2024.
P. S. Lakshmi and V. L. Raju, “ECG de-noising using hybrid linearization method,” TELKOMNIKA Indones. J. Electr. Eng., vol. 15, no. 3, p. 504, Sep. 2015.
M. Franzese and A. Iuliano, “Correlation analysis,” in Encyclopedia of Bioinformatics and Computational Biology, vol. 1, Elsevier, pp. 706–721, 2019.
H. Ahmad, N. A. Othman, M. M Saari, M. S Ramli, M. M Mazlan, and T. Namerikawa, “A hypothesis of state covariance decorrelation effects to partial observability SLAM,” Indones. J. Electr. Eng. Comput. Sci., vol. 14, no.
, pp. 588–596, May 2019.
M. M. Mazlan, N. A. Othman, and H. Ahmad, “Improving covariance matrix diagonalization in SLAM of mobile robot,” in Lecture Notes in Electrical
Engineering, vol. 770, Springer Singapore, pp. 995–1007, 2022.
A. Rauh, S. Wirtensohn, P. Hoher, J. Reuter, and L. Jaulin, “Reliability assessment of an unscented Kalman filter by using ellipsoidal enclosure techniques,” Mathematics, vol. 10, no. 16, p. 3011, Aug. 2022.
M. Berardi and J. K. Galimberti, “Smoothing-based initialization for learning-to-forecast algorithms,” Macroecon. Dyn., vol. 23, no. 3, pp. 1008–1023, Apr. 2019.
S. Zhao, B. Huang, and F. Liu, “Linear optimal unbiased filter for time-variant systems without apriori information on initial conditions,” IEEE Trans. Automat. Contr., vol. 62, no. 2, pp. 882–887, 2017.
S. Jia, Y. Jiao, Z. Zhang, R. Xiong, and Y. Wang, “FEJ-VIRO: A consistent first-estimate Jacobian visual-inertial-ranging odometry,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE, Oct. 2022, pp. 1336–1343.
M. Rupp, B. Blagojevic, C. Knoll, M. P. Zapf, Z. Weimin, and O. Sawodny, “Approximation of covariance matrices based on matching accuracy,” in 2020 IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), IEEE, Jul. 2020, pp. 691–696.
P. Chen, H. Liu, M. Schmidt, Y. Yao, and W. Yao, “Near real-time global ionospheric modeling based on an adaptive Kalman filter state error covariance matrix determination method,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–12, 2022.
Q. Wei and Z. Zhao, “Large covariance matrix estimation with oracle statistical rate,” in 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE, Jun. 2023, pp. 1–5.
P. Shi, Z. Zhu, S. Sun, Z. Rong, X. Zhao, and M. Tan, “Covariance estimation for pose graph optimization in visual-inertial navigation systems,” IEEE Trans. Intell. Veh., vol. 8, no. 6, pp. 3657–3667, Jun. 2023.
S. Zhang, J. Shan, and Y. Liu, “Variational Bayesian estimator for mobile robot localization with unknown noise covariance,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 4, pp. 2185–2193, Aug. 2022.
Article Metrics
Metrics powered by PLOS ALM
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Muhammad Haniff Gusrial, Nur Aqilah Othman, Hamzah Ahmad

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.